Đề bài

Tìm tất cả các giá trị của tham số \(m\) để phương trình \({9^x} - {2.6^x} + m{.4^x} = 0\) có hai nghiệm trái dấu.

  • A.
     \(0 < m < 1\).
  • B.
     \(m < {\rm{ \;}} - 1\) hoặc \(m > 1\).
  • C.
     \(m \le 1\).
  • D.
     \(m < 0\)
Phương pháp giải

Chia cả hai vế cho \({9^x}\) và đưa về pt bậc hai

Lời giải của GV Loigiaihay.com

\({9^x} - {2.6^x} + m{.4^x} = 0\)  (1)

Chia cả hai vế cho \({9^x}\) ta được phương trình

\(1 - 2.{\left( {\frac{2}{3}} \right)^x} + m.{\left( {\frac{2}{3}} \right)^{2x}} = 0 \Leftrightarrow m{t^2} - 2t + 1 = 0\)   với \(t = {\left( {\frac{2}{3}} \right)^x}\)  (2)

Để (1) có 2 nghiệm trái dấu thì (2) có 2 nghiệm phân biệt thỏa mãn \({t_1} < 1 < {t_2}\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{m \ne 0}\\{\Delta ' > 0}\\{\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ne 0}\\{1 - m > 0}\\{\frac{1}{m} - \frac{2}{m} + 1 < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ne 0}\\{m < 1}\\{\frac{{m - 1}}{m} < 0}\end{array}} \right. \Leftrightarrow 0 < m < 1\)

Đáp án A.

Đáp án : A