Cho hàm số \(f(x) = - \frac{m}{3}{x^3} + m{x^2} - 3x + 9\), \(g\left( x \right) = 2{x^3} - 6x + 1\)
a) Phương trình tiếp tuyến của hàm \(g\left( x \right)\) tại \(x = 3\) là: \(y = 3x + 107\)
b) Phương trình tiếp tuyến của \(g\left( x \right)\) song song với đường thẳng \(y = - 6x - 5\) là: \(y = - 6x + 1\)
c) Phương trình \(f'\left( x \right) = g'\left( x \right)\) có hai nghiệm phân biệt với mọi \(m \in \mathbb{R}\)
d) Để \(f'(x) \le 0\forall x \in \mathbb{R}\) thì \(m\).
a) Phương trình tiếp tuyến của hàm \(g\left( x \right)\) tại \(x = 3\) là: \(y = 3x + 107\)
b) Phương trình tiếp tuyến của \(g\left( x \right)\) song song với đường thẳng \(y = - 6x - 5\) là: \(y = - 6x + 1\)
c) Phương trình \(f'\left( x \right) = g'\left( x \right)\) có hai nghiệm phân biệt với mọi \(m \in \mathbb{R}\)
d) Để \(f'(x) \le 0\forall x \in \mathbb{R}\) thì \(m\).
a) Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
b) Hai đường thẳng song song khi chúng có hệ số góc bằng nhau
c) Phương trình bậc hai có 2 nghiệm phân biệt khi \(\Delta > 0\) hoặc \(\Delta ' > 0\)
d) Chia trường hợp rồi tìm các giá trị m thỏa mãn
a) Sai
Ta có: \(g'\left( x \right) = 6{x^2} - 6 \Rightarrow g'\left( 3 \right) = 48\)
Ta có \(x = 3 \Rightarrow g\left( 3 \right) = 37 \Rightarrow A\left( {3;37} \right)\)
Phương trình tiếp tuyến qua điểm \(A\left( {3;37} \right)\) là: \(y = 48\left( {x - 3} \right) + 37 \Rightarrow y = 3x - 107\)
b) Đúng.
Phương trình tiếp tuyến của \(g\left( x \right)\) song song với đường thẳng \(y = - 6x - 5\) nên ta có hệ số góc bẳng \( - 6\)
\( \Rightarrow g'\left( x \right) = 6{x^2} - 6 = - 6 \Leftrightarrow x = 0 \Rightarrow g\left( 0 \right) = 1\) vậy \(B\left( {0;1} \right)\)
Phương trình tiếp tuyến qua điểm \(B\left( {0;1} \right)\) là: \(y = - 6\left( {x - 0} \right) + 1 = - 6x + 1\)
c) Sai
Ta có \(f'\left( x \right) = g'\left( x \right)\)
\(\begin{array}{l} \Leftrightarrow - m{x^2} + 2mx - 3 = 6{x^2} - 6\\ \Leftrightarrow \left( {m + 6} \right){x^2} - 2mx - 3 = 0\end{array}\)
Để phương trình có hai nghiệm phân biệt thì
\(\left\{ \begin{array}{l}m + 6 \ne 0\\\Delta ' = {m^2} + 3\left( {m + 6} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne - 6\\\Delta ' = {m^2} + 3\left( {m + 6} \right) > 0,\forall m \in \mathbb{R}\end{array} \right.\)
Vậy để phương trình có hai nghiệm phân biệt thì \(m \ne - 6\).
d) Tìm tất cả các giá trị của \(m\) để \(f'(x) \le 0\forall x \in \mathbb{R}\).
\(f(x) = - \frac{m}{3}{x^3} + m{x^2} - 3x + 9\)
\( \Rightarrow f'(x) = - m{x^2} + 2mx - 3\)
\(f'(x) \le 0\forall x \in \mathbb{R} \Leftrightarrow - m{x^2} + 2mx - 3 \le 0\forall x \in \mathbb{R}\)
\({\rm{TH1: }}m = 0 \Rightarrow f'(x) = - 3 \le 0\forall x \in \mathbb{R}{\rm{ }}\)
\({\rm{TH2: }}m \ne 0\)
\( - m{x^2} + 2mx - 3 \le 0\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - m < 0}\\{\Delta ' = {m^2} - 3m \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > 0}\\{0 \le m \le 3}\end{array} \Leftrightarrow 0 < m \le 3} \right.} \right.\)
Vậy \(0 \le m \le 3\).