Đề bài

Cho hai tia \({\rm{Ox}},{\rm{Oy}}\) đối nhau. Trên tia \({\rm{Ox}}\) lấy điểm \({\rm{A}}\) sao cho \({\rm{OA}} = 4\;{\rm{cm}}\). Trên tia \({\rm{Oy}}\) lấy điểm \({\rm{B}}\) sao cho \({\rm{OB}} = 2\;{\rm{cm}}\). Gọi \({\rm{C}}\) là trung điểm của đoạn thẳng \({\rm{OA}}\).

a) Tính độ dài đoạn thẳng \({\rm{AB}}\).

b) Điểm \({\rm{O}}\) có là trung điểm của đoạn thẳng \({\rm{BC}}\) không? Vì sao?

c) Vẽ tia \({\rm{Oz}}\) khác các tia \({\rm{Ox}},{\rm{Oy}}\). Viết tên các góc có trong hình vẽ.

Phương pháp giải

Vẽ hình theo hướng dẫn.

a) Xác định độ dài đoạn thẳng AB qua OA và OB.

b) Chứng minh OB = OC và O nằm giữa B và C nên O là trung điểm của BC.

c) Vẽ tia Oz và kể tên các góc trong hình.

Lời giải của GV Loigiaihay.com

Vẽ hình

a) Theo hình vẽ: \(AB = OA + OB = 4 + 2 = 6\;{\rm{cm}}\)

Vậy \(AB = 6\;{\rm{cm}}\)

b) Vì C là trung điểm của đoạn thẳng \({\rm{OA}}\) nên \(OC = \frac{{OA}}{2} = \frac{4}{2} = 2\;{\rm{cm}}\)

Suy ra \({\rm{OB}} = {\rm{OC}}\)

Lại có \({\rm{O}}\) nằm giữa \({\rm{B}}\) và \({\rm{C}}\)

Do đó O là trung điểm của đoạn thẳng \({\rm{BC}}\)

Vậy \({\rm{O}}\) là trung điểm của đoạn thẳng \({\rm{BC}}\).

c)

Các góc có trong hình vẽ là:

\(\widehat {{\rm{xOz}}};\widehat {{\rm{yOz}}};\widehat {{\rm{xOy}}},\widehat {xAy},\widehat {xCy},\widehat {xBy}\)