Đề bài

Giải các phương trình sau:

a) \(7 - \left( {2x + 4} \right) = - \left( {x + 4} \right)\)

b) \(\frac{{1 - 3x}}{6} + x - 1 = \frac{{x + 2}}{2}\)

c) \(\frac{{8x - 3}}{4} - \frac{{3x - 2}}{2} = \frac{{2x - 1}}{2} + \frac{{x + 3}}{4}\)

Phương pháp giải

Đưa phương trình về dạng \(ax + b = 0\) để giải.

Lời giải của GV Loigiaihay.com

a) \(7 - \left( {2x + 4} \right) = - \left( {x + 4} \right)\)

\(\begin{array}{l}7 - 2x - 4 =  - x - 4\\ - 2x + x =  - 4 - 7 + 4\\ - x =  - 7\\x = 7\end{array}\)

Vậy \(x = 7\)

b) \(\frac{{1 - 3x}}{6} + x - 1 = \frac{{x + 2}}{2}\)

\(\begin{array}{l}\frac{{1 - 3x}}{6} + \frac{{6\left( {x - 1} \right)}}{6} = \frac{{3\left( {x + 2} \right)}}{6}\\1 - 3x + 6x - 6 = 3x + 6\\ - 3x + 6x - 3x = 6 + 6 - 1\end{array}\)

\(0 = 11\) (vô lý)

Vậy phương trình vô nghiệm.

c) \(\frac{{8x - 3}}{4} - \frac{{3x - 2}}{2} = \frac{{2x - 1}}{2} + \frac{{x + 3}}{4}\)

\(\begin{array}{l}\frac{{8x - 3}}{4} - \frac{{x + 3}}{4} = \frac{{2x - 1}}{2} + \frac{{3x - 2}}{2}\\\frac{{8x - 3 - x - 3}}{4} = \frac{{2x - 1 + 3x - 2}}{2}\\\frac{{7x - 6}}{4} = \frac{{5x - 3}}{2}\\\frac{{7x - 6}}{4} = \frac{{2\left( {5x - 3} \right)}}{4}\\7x - 6 = 10x - 6\\7x - 10x =  - 6 + 6\\ - 3x = 0\\x = 0\end{array}\)

Vậy \(x = 0\).