Đề bài

Một chất điểm chuyển động có phương trình chuyển động là  \(s = s(t) = 2{t^2} + t - 1\) (t được tính bằng giây, s được tính bẳng mét)

a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)

Đúng
Sai

b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là  \(9\,(m/s)\)

Đúng
Sai

c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)

Đúng
Sai

d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)

Đúng
Sai
Đáp án

a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)

Đúng
Sai

b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là  \(9\,(m/s)\)

Đúng
Sai

c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)

Đúng
Sai

d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)

Đúng
Sai
Phương pháp giải

Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

Lời giải của GV Loigiaihay.com

a) Đạo hàm của hàm số \(s(t)\)tại thời điểm \({t_0}\)

Ta có:

 \(\begin{array}{l}f'({t_0}) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f(t) - f({t_0})}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{2{t^2} + t - 1 - (2{t_0}^2 + {t_0} - 1)}}{{t - {t_0}}}} \right)\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{(t - {t_0})\left[ {2\left( {t + {t_0}} \right) + 1} \right]}}{{t - {t_0}}}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \left[ {2\left( {t + {t_0}} \right) + 1} \right] = 4{t_0} + 1\end{array}\)

b) Phương trình vận tốc của chất điểm là: \(v(t) = s' = s'(t) = 4t + 1\)

Vận tốc tức thời của chuyển động tại thời điểm t = 2 (s) là: \(v(2) = 4.2 + 1 = 9\)\((m/s)\)

c) Vận tốc tức thời của chuyển động tại thời điểm t = 5 (s) là: \(v(5) = 4.5 + 1 = 21\)\((m/s)\)

d) Trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)thì chất điểm di chuyển được quãng đường: \(4.2 + 2 - 1 = 9(m)\)

Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm \(t = 0\) là:

\(\overline v  = \frac{{\Delta s}}{{\Delta t}} = \frac{{9 - 0}}{{2 - 0}} = 4,5(m/s)\)