Đề bài

Với hàm số \(g\left( x \right) = \frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}}\); g'(2) bằng

  • A.
    232.
  • B.
    72.
  • C.
    152.
  • D.
    -75.
Phương pháp giải

Sử dụng phương tính đạo hàm của hàm hợp.

Lời giải của GV Loigiaihay.com

\(g'\left( x \right) = \frac{{\left[ {\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}} \right]'(x - 1) - \left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}.(x - 1)'}}{{{{\left( {x - 1} \right)}^2}}} \)

\(= \frac{{\left[ {2{{\left( {2 - 3x} \right)}^2} + (2x + 1).2\left( {2 - 3x} \right).( - 3)} \right] + \left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{{{\left( {x - 1} \right)}^2}}}\)

\( = \frac{{3x(3x - 2)(4x - 5)}}{{{{\left( {x - 1} \right)}^2}}}\)

\( \Rightarrow g'\left( 2 \right) = \frac{{3x(3x - 2)(4x - 5)}}{{{{\left( {x - 1} \right)}^2}}} = 72\).

Đáp án : B