Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 5{\rm{\;cm}}\) và \(BC = 13{\rm{\;cm}}\). Qua trung điểm \(M\) của \({\rm{AB}}\), vẽ một đường thẳng song song với \({\rm{AC}}\) cắt \({\rm{BC}}\) tại \({\rm{N}}\). Tính độ dài \({\rm{MN}}\).
-
A.
\(6\left( {{\rm{\;m}}} \right)\)
-
B.
\(7,5\left( {{\rm{\;m}}} \right)\)
-
C.
\(2,5\left( {{\rm{\;m}}} \right)\)
-
D.
\(10\left( {{\rm{\;m}}} \right)\)
Áp dụng định lí Pythagore vào \(\Delta {\rm{ABC}}\) vuông tại \({\rm{A}}\) để tính cạnh \({\rm{AC}}\).
Áp dụng định lí: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
Từ đó suy ra \({\rm{MN}}\) là đường trung bình.
Đường trung bình của tam giác thì song song vơi cạnh thứ ba và bằng nửa cạnh ấy.
Áp dụng định lí Pythagore vào \(\Delta {\rm{ABC}}\) vuông tại \({\rm{A}}\) có: \({\rm{B}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2}\) hay \({\rm{A}}{{\rm{C}}^2} = {\rm{B}}{{\rm{C}}^2} - {\rm{A}}{{\rm{B}}^2} = {13^2} - {5^2} = 144\) suy ra \({\rm{AC}} = 12{\rm{\;cm}}\)
Xét \(\Delta {\rm{ABC}}\) có \({\rm{MA}} = {\rm{MB}}\) (theo gt); \({\rm{MN}}//{\rm{AC}}\) (theo gt) nên \({\rm{NB}} = {\rm{NC}}\)
Do đó \({\rm{MN}}\) là đường trung bình của \(\Delta {\rm{ABC}}\) suy ra \({\rm{MN}} = \frac{1}{2}{\rm{AC}}\) hay \({\rm{MN}} = \frac{1}{2} \cdot 12 = 6\left( {{\rm{\;cm}}} \right)\).
Đáp án A.
Đáp án : A
Các bài tập cùng chuyên đề
Chọn khẳng định sai.
Tuổi bố hiện nay gấp 2,4 lần tuổi con. 5 năm trước đây, tuổi bố gấp \(\frac{{11}}{4}\) lần tuổi con. Tính tuổi con hiện nay.
Với \(x = 7\) là nghiệm của phương trình nào dưới đây?
Hai đường thẳng \(y = - 5x\) và \(y = - 5x + 2\)
Cho tam giác \({\rm{ABC}}\) vuông tại \(A\) và có đường phân giác \(BD\left( {D \in AC} \right)\). Biết \(AD = 3{\rm{\;cm}},DC = 5{\rm{\;cm}}\). Tính độ dài các đoạn thẳng \({\rm{BC}}\).
Trong hình dưới đây, độ dài đoạn thẳng \({\rm{A'C'}}\) mô tả chiều cao của một cái cây, đoạn thẳng \({\rm{AC}}\) mô tả chiều cao của một cái cọc (cây và cọc cùng vuông góc với đường thẳng đi qua ba điểm \(\left. {A',A,B} \right)\). Giả sử \(AC = 2{\rm{\;m}},AB = 1,5{\rm{\;m}},A'B = 4,5{\rm{\;m}}\). Tính chiều cao của cây.
Tìm hệ số góc của mỗi đường thẳng sau:
a) \(y = - 1,7x - 1,7\);
b) \(y = - \sqrt 5 x + 1\);
c) \(y = \frac{9}{{ - 11}}x + \frac{{15}}{8}\)
d) \(y = \frac{1}{{\sqrt 3 }}x - \sqrt {11} \).
Giải các phương trình:
a) \(\frac{{2x}}{{15}} - \frac{{15 - 2x}}{{10}} = \frac{7}{6}\);
b) \(\frac{x}{{20}} - \frac{{x + 10}}{{25}} = 2\);
c) \(\frac{{2x - 37}}{3} = - 4x + 5\);
d) \(\frac{{3\left( {3x + 1} \right) + 2}}{2} - 3 = \frac{{2\left( {5x + 1} \right)}}{3} - \frac{{3x + 1}}{6}\)
Giá niêm yết của một máy lọc nước và một nồi cơm điện có tổng là 6,5 triệu đồng. Bác Bình mua hàng vào đúng dịp tri ân khách hàng nên so với giá niêm yết máy lọc nước được giảm giá \(15{\rm{\% }}\) và nồi cơm điện được giảm giá \(10{\rm{\% }}\). Do đó, tổng số tiền bác phải trả là 5,65 triệu đồng. Tính giá tiền niêm yết của mỗi sản phẩm đã nêu.
Hiện tại, cô Hạnh đã tiết kiệm được 500 triệu đồng. Để thực hiện dự định mua một căn chung cư có giá trị 2,6 tỉ đồng, cô Hạnh đã lên kế hoạch hằng tháng tiết kiệm 15 triệu đồng. Gọi y (triệu đồng) là số tiền cô Hạnh tiết kiệm được sau \(x\) (tháng) kể từ hiện tại.
a) Viết công thức tính \(y\) theo \(x\). Hỏi \(y\) có phải là hàm số bậc nhất của \(x\) hay không?
b) Hỏi sau bao lâu kể từ hiện tại thì cô Hạnh có thể mua được căn hộ chung cư đó bằng tiền tiết kiệm?