Đề bài

Cho đồ thị các hàm số \(y = {a^x},y = {b^x},y = {\log _c}x\) như hình vẽ dưới

Khẳng định nào dưới đây là đúng?

  • A.
    \(a > b > c > 1\).
  • B.
    \(a > b > 1 > c\).
  • C.
    \(a > 1 > b > c\).
  • D.
    \(a < b < c < 1\).
Phương pháp giải

Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\).

Nếu \(a > 1\) thì hàm số \(y = {a^x}\left( {a > 0} \right)\) đồng biến trên \(\mathbb{R}\).

Lời giải của GV Loigiaihay.com

Ta thấy hàm số \(y = {\log _c}x\) nghịch biến nên \(c < 1\).

Hàm số \(y = {a^x},y = {b^x}\) đồng biến nên \(a > 1,b > 1\).

Xét tại \(x = 1\) thì đồ thị hàm số \(y = {a^x}\) có tung độ lớn hơn tung độ của đồ thị hàm số \(y = {b^x}\) nên \(a > b\).  Do đó, \(a > b > 1 > c\).

Đáp án B.

Đáp án : B