Tìm mệnh đề sai trong các mệnh đề sau:
-
A.
Cho hai đường thẳng chéo nhau và vuông góc nhau. Khi đó, có một và chỉ một mặt phẳng chứa hai đường thẳng này và vuông góc với đường thẳng kia.
-
B.
Qua một điểm O cho trước có duy nhất một đường thẳng vuông góc với đường thẳng cho trước.
-
C.
Qua một điểm O cho trước có duy nhất một mặt phẳng vuông góc với đường thẳng cho trước.
-
D.
Qua một điểm O cho trước có duy nhất một đường thẳng vuông góc với một mặt phẳng cho trước.
Qua một điểm O cho trước có vô số đường thẳng vuông góc với đường thẳng cho trước cho trước.
Qua một điểm O cho trước có vô số đường thẳng vuông góc với đường thẳng cho trước cho trước nên đáp án B sai.
Hình minh họa:
Các đáp án còn lại đều đúng.
Đáp án B.
Đáp án : B
Các bài tập cùng chuyên đề
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có:
Chọn đáp án đúng
Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó:
Chọn đáp án đúng:
Rút gọn biểu thức \({\left( {{a^{\sqrt 3 }}.{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}}\) (với \(a,b > 0\)) được kết quả là:
Giá trị của biểu thức \({\left( {\sqrt 5 - 2} \right)^{2024}}.{\left( {\sqrt 5 + 2} \right)^{2025}}\)
Chọn đáp án đúng.
Với \(0 < a \ne 1,b,c > 0\) thì:
Chọn đáp án đúng.
Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì:
Khẳng định nào sau đây đúng?
Tính \({\log _8}1250\) theo a biết \(a = {\log _2}5\).
Chọn đáp án đúng:
Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm:
Hàm số nào dưới đây là hàm số lôgarit cơ số 2?
Hàm số nào dưới đây nghịch biến trên \(\mathbb{R}\)?
Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là:
Tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là:
Cho hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\). Biết rằng: \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = M,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = m\). Khi đó:
Với giá trị nào của b thì phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm?
Nghiệm của phương trình \({\left( {\sqrt 3 } \right)^x} = 3\) là:
Phương trình \({\log _2}x = - 2\) có nghiệm là:
Nghiệm của phương trình \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }}\) là: