Trong cách viết sau, cách viết nào cho ta phân số?
-
A.
\(\frac{4}{7}\).
-
B.
\(\frac{{0,25}}{{ - 3}}\).
-
C.
\(\frac{5}{0}\).
-
D.
\(\frac{{6,23}}{{7,4}}\).
Dựa vào khái niệm về phân số.
\(\frac{{0,25}}{{ - 3}}\) không phải phân số vì \(0,25 \notin \mathbb{Z}\).
\(\frac{5}{0}\) không phải phân số vì 0 nằm ở mẫu.
\(\frac{{6,23}}{{7,4}}\) không phải phân số vì \(6,23;7,4 \notin \mathbb{Z}\).
\(\frac{4}{7}\) là phân số vì \(4;7 \in \mathbb{Z};7 \ne 0\).
Đáp án A.
Đáp án : A
Các bài tập cùng chuyên đề
Số đối của phân số \( - \frac{{16}}{{25}}\) là:
Phân số nào sau đây bằng phân số \(\frac{3}{4}\)?
Tìm số nguyên \(y\) biết \(\frac{2}{{ - 3}} = \frac{6}{{ - y}}\).
Số \(3,148\) được làm tròn đến hàng phần chục?
Phân số \(\frac{{ - 31}}{{10}}\) được viết dưới dạng số thập phân?
Tính \(25\% \) của \(20\)?
Kết quả phép tính \(1,3 + 3,4 - 4,7 + 5,6 - 4,3\) là:
Cho hình vẽ
Số giao điểm tạo bởi 4 đường thẳng trong hình trên là:
Chọn phát biểu đúng trong các phát biểu sau:
Qua 2 điểm phân biệt ta vẽ được:
Cho hình vẽ. Hai tia nào đối nhau?
Trong hình vẽ sau đây có bao nhiêu đoạn thẳng?
Thực hiện các phép tính (tính hợp lí nếu có thể):
a) A = \(\frac{1}{2}\)+\(\frac{1}{3}\)
b) \(B = \;6,3 + \left( { - {\rm{ }}6,3} \right) + 4,9\)
c) \(C = \frac{{ - 3}}{7} + \frac{5}{{14}} - \frac{4}{7} + \frac{3}{{12}} + \frac{9}{{14}}\)s
Tìm x, biết: \(\)
a) \(x - 5,01 = 7,02 - 3\;\)
b) \(\,\frac{1}{5} - \left( {\frac{2}{3} - x} \right) = \frac{{ - 3}}{5}\)
Một đám đất hình chữ nhật có chiều rộng 60m, chiều dài bằng \(\frac{4}{3}\) chiều rộng. Người ta để \(\frac{7}{{12}}\)diện tích đám đất đó trồng cây, \(30\% \) diện tích còn lại đó để đào ao thả cá. Diện tích ao bằng bao nhiêu phần trăm diện tích cả đám đất?
Cho \(Ox\) và \(Oy\) là hai tia đối nhau. Trên tia \(Ox\) lấy điểm \(A\) sao cho \(OA = 6cm\). Trên tia \(Oy\) lấy điểm \(B\) sao cho \(OB = 3cm\). Gọi \(M,N\) lần lượt là trung điểm của \(OA,OB\).
a) Tính \(OM,{\rm{ }}ON\)?
b) Tính độ dài đoạn thẳng \(MN\)?
a) Tính tổng \(A = \frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + \frac{1}{{15}} + ... + \frac{1}{{45}}\).
b) Chứng minh \(M = \frac{{n - 1}}{{n - 2}}\,\,\,\left( {n \in {\rm Z}\,;\,n \ne 2} \right)\) là phân số tối giản.