Cho ∆DFE cân tại E. Gọi M là trung điểm của DF.
a) Chứng minh: \(\Delta EDM{\rm{ }} = {\rm{ }}\Delta EFM\).
b) Chứng minh \(EM \bot DF\).
c) Từ M vẽ MA \( \bot \) ED tại A, MB \( \bot \) EF tại B. Chứng minh AB // DF.
a) Chứng minh \(\Delta EDM{\rm{ }} = {\rm{ }}\Delta EFM\) theo trường hợp cạnh – cạnh – cạnh.
b) Chứng minh \(\widehat {EMD} = \widehat {EMF} = {90^0}\) suy ra \(EM \bot DF\).
c) Chứng minh \(\Delta EAB\) cân nên \(\widehat {EAB} = \widehat {EDF}\), mà hai góc ở vị trí đồng vị nên AB // DF.
a) Xét \(\Delta EDM\) và \(\Delta EFM\) có:
DE = EF (tam giác DFE cân tại E)
DM = MF (M là trung điểm của DF)
ME chung
Suy ra \(\Delta EDM = \Delta EFM\) (c.c.c) (đpcm)
b) \(\Delta EDM = \Delta EFM\) suy ra \(\widehat {EMD} = \widehat {EMF}\) (hai góc tương ứng)
Mà \(\widehat {EMD}\) và \(\widehat {EMF}\) là hai góc kề bù nên \(\widehat {EMD} + \widehat {EMF} = {180^0}\)
Suy ra \(\widehat {EMD} = \widehat {EMF} = \frac{{{{180}^0}}}{2} = {90^0}\) hay \(EM \bot DF\) (đpcm)
c) \(\Delta EDM = \Delta EFM\) suy ra \(\widehat {DEM} = \widehat {FEM}\) (hai góc tương ứng)
Xét \(\Delta AEM\) và \(\Delta BEM\) có:
\(\widehat {AEM} = \widehat {BEM}\) (cmt)
\(\widehat {EAM} = \widehat {EBM}\left( { = {{90}^0}} \right)\)
EM chung
Suy ra \(\Delta AEM = \Delta BEM\) (cạnh huyền – góc nhọn)
Suy ra AE = EB (hai cạnh tương ứng) suy ra \(\Delta AEB\) là tam giác cân tại E.
\(\widehat {EAB} = \widehat {EBA} = \frac{{{{180}^0} - \widehat E}}{2}\)
Mà \(\Delta DFE\) cân tại E nên \(\widehat {EDF} = \widehat {EFD} = \frac{{{{180}^0} - \widehat E}}{2}\)
Suy ra \(\widehat {EAB} = \widehat {EDF}\).
Mà \(\widehat {EAB}\) và \(\widehat {EDF}\) là hai góc đồng vị nên AB // DF (đpcm)
Các bài tập cùng chuyên đề
Tổng số đo các góc của tam giác bằng
Cho \(\Delta MNP = \Delta LKQ\), MN = 3cm, MP = 4cm, NP = 5cm, \(\widehat M = {90^0}\). Khi đó:
Cho tam giác MNK có MN = NK. Khi đó:
Cho tam giác ABC cân tại C. Khi đó
Đường vuông góc kẻ từ điểm A đến đường thẳng m là