Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó:

  • A.
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) + f\left( {{x_0}} \right)}}{{\Delta x}}\).
  • B.
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).
  • C.
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{2\Delta x}}\).
  • D.
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) + f\left( {{x_0}} \right)}}{{2\Delta x}}\).
Phương pháp giải

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó, \(x = {x_0} + \Delta x\) và \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).

Lời giải của GV Loigiaihay.com

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó, \(x = {x_0} + \Delta x\) và \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).

Đáp án : B