Đề bài

Với giá trị nào của a thì \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}}\)?

  • A.

    \(a = \frac{3}{4}\)

  • B.

    \(a = \frac{1}{2}\)

  • C.

    \(a = 1\)

  • D.

    \(a = \frac{3}{2}\)

Phương pháp giải

Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  > \beta \).

Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  < \beta \).

Lời giải của GV Loigiaihay.com

Ta có: \(\frac{1}{{{a^{ - 3}}}} = {a^3} = {a^{\sqrt 9 }}\) nên \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}} \Leftrightarrow {a^{\sqrt 8 }} < {a^{\sqrt 9 }}\).

Vì \(\sqrt 8  < \sqrt 9 \), mà \({a^{\sqrt 8 }} < {a^{\sqrt 9 }}\) nên \(a > 1\). Do đó, \(a = \frac{3}{2}\) thỏa mãn yêu cầu bài toán.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Ta biết rằng \(\sqrt 2 \) là một số vô tỉ và \(\sqrt 2  = 1,4142135624...\)

Gọi \(\left( {{r_n}} \right)\) là dãy số hữu tỉ dùng để xấp xỉ số \(\sqrt 2 ,\) với \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,4142;...\)

a) Dùng máy tính cầm tay, hãy tính: \({3^{{r_1}}};{3^{{r_2}}};{3^{{r_3}}};{3^{{r_4}}}\) và \({3^{\sqrt 2 }}.\)

b) Có nhận xét gì về sai số tuyệt đối giữa \({3^{\sqrt 2 }}\) và \({3^{{r_n}}},\) tức là \(\left| {{3^{\sqrt 2 }} - {3^{{r_n}}}} \right|,\) khi n càng lớn?

Xem lời giải >>
Bài 2 :

Sử dụng máy tính cầm tay, tính các luỹ thừa sau đây (làm tròn đến chữ số thập phân thứ sáu):

a) \(1,{2^{1,5}}\);                  

b) \({10^{\sqrt 3 }}\);              

c) \({\left( {0,5} \right)^{ - \frac{2}{3}}}\).

Xem lời giải >>
Bài 3 :

Ta biết rằng, \(\sqrt 2 \) là một số vô tỉ có thể biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn: \(\sqrt 2  = 1,414213562...\)

Cũng có thể coi \(\sqrt 2 \) là giới hạn của dãy số hữu tỉ \(\left( {{r_n}} \right)\):

\(1,4;1,41;1,414;1,4142;...\)

Từ đây, ta lập dãy số các luỹ thừa \(\left( {{3^{{r_n}}}} \right)\).

a) Bảng dưới cho biết những số hạng đầu tiên của dãy số \(\left( {{3^{{r_n}}}} \right)\) (làm tròn đến chữ số thập phân thứ chín). Sử dụng máy tính cầm tay, hãy tính số hạng thứ 6 và thứ 7 của dãy số này.

 

b) Nêu nhận xét về dãy số \(\left( {{3^{{r_n}}}} \right)\).

Xem lời giải >>
Bài 4 :

Rút gọn biểu thức: \({\left( {{x^{\sqrt 2 }}y} \right)^{\sqrt 2 }}\left( {9{y^{ - \sqrt 2 }}} \right)\) (với \(x,y > 0\)).

Xem lời giải >>
Bài 5 :

Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):

a) \({a^{\frac{3}{5}}}.{a^{\frac{1}{2}}}:{a^{ - \frac{2}{5}}}\);    

b) \(\sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2}}}\sqrt a } } \).

Xem lời giải >>
Bài 6 :

a) Sử dụng máy tính cầm tay, hoàn thành bảng sau vào vở (làm tròn kết quả đến chữ số thập phân thứ năm).

b) Từ kết quả quả ở câu a, có dự đoán gì về tính chất của phép tính luỹ thừa với số mũ thực?

Xem lời giải >>
Bài 7 :

Dùng máy tính cầm tay để tính (làm tròn kết quả đến hàng phần trăm):

a) \( (-2,7)^{-4}\).

b) \( \sqrt 3 - 1)^{\sqrt[3] {4} + 1}\).

Xem lời giải >>
Bài 8 :

Không sử dụng máy tính cầm tay, hãy so sánh các số: \({2^{2\sqrt 3 }}\,\,và \,\,{2^{3\sqrt 2 }}\).

Xem lời giải >>
Bài 9 :

So sánh \({10^{\sqrt 2 }}\,\,và \,\,10\).

Xem lời giải >>
Bài 10 :

Xét số vô tỉ: \(\sqrt 2  = 1,4142135624...\). Xét dãy số hữu tỉ: \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,414;{r_5} = 1,4142;{r_6} = 1,41421;...\) và \(\lim {r_n} = \sqrt 2 \). Bằng cách tính \({3^{{r_n}}}\) tương ứng, ta nhận được Bảng 1 ghi các dãy số \(\left( {{r_n}} \right)\) và \(\left( {{3^{{r_n}}}} \right)\) với n = 1, 2, …, 6. Người ta chứng minh được rằng khi \(n \to  + \infty \) thì dãy số \(\left( {{3^{{r_n}}}} \right)\) dần đến một giới hạn mà ta gọi là \({3^{\sqrt 2 }}\). Nêu dự đoán về giá trị của số \({3^{\sqrt 2 }}\) (đến hàng phần trăm).

Xem lời giải >>
Bài 11 :

Tính:

a) \(\sqrt[3]{{ - 27}}\)

b)\({25^{\frac{3}{2}}}\);

c) \({32^{ - \frac{2}{5}}}\)

d)\({\left( {\frac{{27}}{8}} \right)^{\frac{2}{3}}}\).

Xem lời giải >>
Bài 12 :

Điều kiện xác định của \({x^{\sqrt 2 }}\) là:

A. \(x \in \mathbb{R}\)

B. \(x \ne 0\)

C. \(x \ge 0\)

D. \(x > 0\)

Xem lời giải >>
Bài 13 :

Rút gọn biểu thức \(P = \frac{{{a^{\sqrt 5  + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}}\) (với \(a > 0\)).

Xem lời giải >>