Đề bài

Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22. Tính số học sinh của mỗi lớp, biết rằng lớp 7C có nhiều hơn lớp 7A là 2 học sinh.

Phương pháp giải

Áp dụng tính chất của dãy tỉ số bằng nhau để tìm số học sinh của mỗi lớp.

Lời giải của GV Loigiaihay.com

Gọi số học sinh lớp 7A, 7B, 7C lần lượt là a, b, c \(\left( {a,b,c \in \mathbb{N}*,c > 2} \right)\) (học sinh)

Vì số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22 nên ta có dãy tỉ số bằng nhau:

\(\frac{a}{{21}} = \frac{b}{{20}} = \frac{c}{{22}}\)

Do lớp 7C có nhiều hơn lớp 7A 2 học sinh nên áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{b}{{20}} = \frac{c}{{22}} = \frac{a}{{21}} = \frac{{c - a}}{{22 - 21}} = \frac{2}{1} = 2\).

Từ đó suy ra:

\(\begin{array}{l}c = 2.22 = 44\\a = 2.21 = 42\\b = 2.20 = 40\end{array}\) (Thỏa mãn)

Vậy số học sinh lớp 7A, 7B, 7C lần lượt là 42; 40; 44 học sinh.

Các bài tập cùng chuyên đề

Bài 1 :

Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?

Xem lời giải >>
Bài 2 :

Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}.\) Khẳng định đúng

Xem lời giải >>
Bài 3 :

Từ đẳng thức \(2.\left( { - 15} \right) = \left( { - 5} \right).6\), ta có thể lập được tỉ lệ thức nào?

Xem lời giải >>
Bài 4 :

Cho \(x,y\) là hai đại lượng tỉ lệ nghịch với nhau, biết \({x_1},{y_1}\) và \({x_2},{y_2}\) là các cặp giá trị tương ứng của chúng. Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 5 :

Nếu ba số \(a;{\rm{ }}b;{\rm{ }}c\) tương ứng tỉ lệ với \(2;5;7\) ta có dãy tỉ số bằng nhau là:

Xem lời giải >>
Bài 6 :

Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k =  - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là:

Xem lời giải >>
Bài 7 :

Biểu thức nào là đa thức một biến?

Xem lời giải >>
Bài 8 :

Trong hình vẽ bên, có điểm \(C\) nằm giữa \(B\) và \(D\). So sánh \(AB;AC;AD\) ta được

Xem lời giải >>
Bài 9 :

Trong các bộ ba đoạn thẳng sau đây. Bộ gồm ba đoạn thẳng nào là độ dài ba cạnh của một tam giác?

Xem lời giải >>
Bài 10 :

Cho đại lượng y tỉ lệ thuận với đại lượng x. Khi \(x = 4\) thì \(y = 16\) . Vậy hệ số tỉ lệ bằng

Xem lời giải >>
Bài 11 :

Biểu thức biểu thị chu vi của hình chữ nhật có chiều dài \(8cm\) và chiều rộng \(6cm\) là

Xem lời giải >>
Bài 12 :

Đường vuông góc kẻ từ H xuống đường thẳng m là:

Xem lời giải >>
Bài 13 :

a) Tìm x biết \(\frac{6}{x} = \frac{{ - 4}}{5}\).

b) Tìm \(x;y\) biết: \(\frac{x}{5} = \frac{y}{3}\) và \(x + 2y = 33\).

c) Tìm a, b, c tỉ lệ với ba số 2; 3; -4 và a + b – c = 18.

Xem lời giải >>
Bài 14 :

Một khu đất hình chữ nhật có chiều dài và chiều rộng tỉ lệ với 8 và 5. Diện tích khu đất đó bằng \(360{m^2}\). Tính chiều dài và chiều rộng của khu đất đó.

Xem lời giải >>
Bài 15 :

Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và H). Chứng minh rằng:

a) BH = CH.

b) BA > BM.

Xem lời giải >>
Bài 16 :

Cho tam giác ABC có trung tuyến AM. Chứng minh rằng \(AB + AC > 2AM\).

Xem lời giải >>