Cho biểu thức \(M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right):\frac{2}{{x + 2}}\)
a) Tìm điều kiện xác định của M.
b) Rút gọn M.
c) Tìm x để \(M = 1\).
a) Tìm điều kiện cho từng phân thức trong M.
b) Sử dụng các phép tính để rút gọn M
c) Thay M = 1 để tìm x.
a) Để M xác định thì:
\(\left\{ \begin{array}{l}x - 2 \ne 0\\x + 2 \ne 0\end{array} \right.\) hay \(x \ne \pm 2\)
Vậy điều kiện xác định của M là \(x \ne \pm 2\).
b) Ta có: \(M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right):\frac{2}{{x + 2}}\)
\(\begin{array}{l}M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right).\frac{{x + 2}}{2}\\M = \frac{1}{{x - 2}}.\frac{{x + 2}}{2} - \frac{1}{{x + 2}}.\frac{{x + 2}}{2}\\M = \frac{{x + 2}}{{2\left( {x - 2} \right)}} - \frac{1}{2}\\M = \frac{{x + 2 - \left( {x - 2} \right)}}{{2\left( {x - 2} \right)}}\\M = \frac{{x + 2 - x + 2}}{{2\left( {x - 2} \right)}}\\M = \frac{4}{{2\left( {x - 2} \right)}}\\M = \frac{2}{{x - 2}}\end{array}\)
Vậy \(M = \frac{2}{{x - 2}}\).
c) Thay M = 1, ta được:
\(\begin{array}{l}\frac{2}{{x - 2}} = 1\\x - 2 = 2\\x = 4\end{array}\)
Vậy x = 4 thì M = 1.