Đề bài

Cho biểu thức \(M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right):\frac{2}{{x + 2}}\)

a) Tìm điều kiện xác định của M.

b) Rút gọn M.

c) Tìm x để \(M = 1\).

Phương pháp giải

a) Tìm điều kiện cho từng phân thức trong M.

b) Sử dụng các phép tính để rút gọn M

c) Thay M = 1 để tìm x.

Lời giải của GV Loigiaihay.com

a) Để M xác định thì:

\(\left\{ \begin{array}{l}x - 2 \ne 0\\x + 2 \ne 0\end{array} \right.\) hay \(x \ne  \pm 2\)
Vậy điều kiện xác định của M là \(x \ne  \pm 2\).

b) Ta có: \(M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right):\frac{2}{{x + 2}}\)

\(\begin{array}{l}M = \left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right).\frac{{x + 2}}{2}\\M = \frac{1}{{x - 2}}.\frac{{x + 2}}{2} - \frac{1}{{x + 2}}.\frac{{x + 2}}{2}\\M = \frac{{x + 2}}{{2\left( {x - 2} \right)}} - \frac{1}{2}\\M = \frac{{x + 2 - \left( {x - 2} \right)}}{{2\left( {x - 2} \right)}}\\M = \frac{{x + 2 - x + 2}}{{2\left( {x - 2} \right)}}\\M = \frac{4}{{2\left( {x - 2} \right)}}\\M = \frac{2}{{x - 2}}\end{array}\)

Vậy \(M = \frac{2}{{x - 2}}\).

c) Thay M = 1, ta được:

\(\begin{array}{l}\frac{2}{{x - 2}} = 1\\x - 2 = 2\\x = 4\end{array}\)

Vậy x = 4 thì M = 1.