Đề bài
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Số hạng tổng quát \({u_n}\) được xác định theo công thức:
-
A.
\({u_n} = {u_1} + \left( {n - 1} \right)d\).
-
B.
\({u_n} = {u_1} + nd\).
-
C.
\({u_n} = {u_1}.{d^n}\).
-
D.
\({u_n} = {u_1}.{d^{n - 1}}\).
Phương pháp giải
Sử dụng kiến thức về số hạng tổng quát của cấp số cộng: Cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Lời giải của GV Loigiaihay.com
Cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Đáp án : A