Đề bài

Cho tứ giác ABCD có \(AB = CD\). Gọi M là trung điểm của BC. Gọi (P) là mặt phẳng đi qua M song song với AB và CD. Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là hình gì?

Phương pháp giải

Sử dụng kiến thức về giao tuyến của hai mặt phẳng: Nếu hai mặt phẳng chứa hai đường thẳng song song với nhau thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

Lời giải của GV Loigiaihay.com

Vì (P) qua M và song song với AB nên \(\left( P \right) \cap \left( {ABC} \right) = MN\), với N là giao điểm của đường thẳng qua M song song với AB và cạnh AC.

Vì (P) qua N và song song với CD nên \(\left( P \right) \cap \left( {ACD} \right) = NP\), với P là giao điểm của đường thẳng qua N song song với CD và cạnh AD.

Vì (P) qua M và song song với CD nên \(\left( P \right) \cap \left( {BCD} \right) = MQ\), với Q là giao điểm của đường thẳng qua M song song với CD và cạnh BD.

Do đó, thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là tứ giác MNPQ.

Ta có: MN//PQ, \(MN = PQ = \frac{1}{2}AB\), MQ//PN, \(MQ = PN = \frac{1}{2}DC\), \(AB = CD\)

Do đó, \(MN = NP = PQ = QM\) nên tứ giác MNPQ là hình thoi.