Xét góc lượng giác \(\left( {OA,OM} \right) = \alpha \), trong đó M là điểm không nằm trên các trục tọa độ Ox và Oy. Khi đó, M thuộc góc phần tư nào để \(\sin \alpha \) và \(\cos \alpha \) trái dấu?
-
A.
Góc phần tư thứ (I) và (II).
-
B.
Góc phần tư thứ (I) và (III).
-
C.
Góc phần tư thứ (II) và (IV).
-
D.
Góc phần tư thứ (II) và (III).
Sử dụng kiến thức về dấu của các giá trị lượng giác.
Với \(\alpha \in \) góc phần tư thứ I thì: \(\sin \alpha > 0,\cos \alpha > 0\)
Với \(\alpha \in \) góc phần tư thứ II thì: \(\sin \alpha > 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ III thì: \(\sin \alpha < 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ IV thì: \(\sin \alpha < 0,\cos \alpha > 0\)
Ta có: Với \(\alpha \in \) góc phần tư thứ I thì: \(\sin \alpha > 0,\cos \alpha > 0\)
Với \(\alpha \in \) góc phần tư thứ II thì: \(\sin \alpha > 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ III thì: \(\sin \alpha < 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ IV thì: \(\sin \alpha < 0,\cos \alpha > 0\)
Do đó, M thuộc góc phần tư thứ (II) và (IV) thì \(\sin \alpha \) và \(\cos \alpha \) trái dấu.
Đáp án : C