Hưởng ứng phong trào “Cùng chung tay đẩy lùi dịch bệnh Covid-19”, Liên đội trường THSC Mạc Đĩnh Chi phát động các lớp ủng hộ các lực lượng nơi tuyến đầu chống dịch. Ba lớp 7A; 7B; 7C đã ủng hộ được 120 chiếc khẩu trang y tế. Biết số khẩu trang của mỗi lớp ủng hộ tỉ lệ với 3; 4; 5. Tìm số khẩu trang mỗi lớp đã ủng hộ?
Sử dụng tính chất dãy tỉ số bằng nhau.
Gọi số khẩu trang của mỗi lớp 7A; 7B; 7C ủng hộ lần lượt là x, y, z (chiếc) (x, y, z \( \in \)N*)
Theo đề bài ta có: x + y + z = 120 và \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{120}}{{12}} = 10\)
Do đó:
\(\begin{array}{l}\frac{x}{3} = 10 \Rightarrow x = 30\\\frac{y}{4} = 10 \Rightarrow y = 40\\\frac{z}{5} = 10 \Rightarrow z = 50\end{array}\)
Vậy số khẩu trang mỗi lớp 7A; 7B; 7C ủng hộ lần lượt là 30; 40; 50 chiếc
Các bài tập cùng chuyên đề
Đại lượng y liên hệ với x theo công thức \(y = - 3x\). Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là:
Hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(AB = 5\,{\rm{cm}}\). Khẳng định nào sau đây đúng?
Tính thể tích khối gỗ hình lăng trụ đứng ABC.DEF có các kích thước như hình vẽ bên.
Hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ 12. Khi x = 2 thì giá trị tương ứng của y là:
Giá trị x trong tỉ lệ thức \(\frac{{ - 2}}{5} = \frac{x}{{20}}\) là:
Một bể nước có dạng hình hộp chữ nhật có các kích thước là 20dm; 12dm; 8dm. Người ta dùng một cái can có dung tích 20 lít để lấy nước đổ vào bể, hỏi cần đổ bao nhiêu can nước thì bể đầy nước? (Cho biết 1 dm3 = 1 lít)
Cho hình vẽ:
a) Chứng minh: a // b
b) Cho \({\hat E_1} = {50^0}\). Tính \({\hat F_1};\,\,{\hat F_2}\).
c) Biết Ex là tia phân giác của \(\widehat {{\rm{AEF}}}\). Tính \({{\rm{\hat E}}_2}\).