Đề bài

Số tin nhắn của một người nhận được mỗi ngày được lựa chọn ngẫu nhiên và được thống kê bởi bảng sau:

Tìm trung vị của mẫu số liệu này?

  • A.
    7,73.
  • B.
    8,73.    
  • C.
    7,5.
  • D.
    8,5.
Phương pháp giải

Sử dụng kiến thức số trung vị của mẫu số liệu ghép nhóm:

Bước 1: Xác định nhóm chứa trung vị. Giả sử nhóm đó là nhóm thứ p: \(\left[ {{a_p};{a_{p + 1}}} \right)\)

Bước 2: Trung vị là \({M_e} = {a_p} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\)

Trong đó n là cỡ mẫu, \({m_p}\) là tần số của nhóm p. Với \(p = 1\), ta quy ước \({m_1} + ... + {m_{p - 1}} = 0\)

Lời giải của GV Loigiaihay.com

Cỡ mẫu: \(n = 3 + 12 + 15 + 24 + 2 = 56\)

Gọi \({x_1};...;{x_{56}}\) số tin nhắn nhận được trong 56 ngày và được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\) Do 2 giá trị \({x_{28}},{x_{29}}\) thuộc nhóm \(\left[ {7;9} \right)\) nên nhóm này chứa trung vị.

Do đó, \(p = 3;{a_3} = 7;{m_3} = 15;{m_1} + {m_2} = 3 + 12 = 15,{a_4} - {a_3} = 2\).

Vậy trung vị của nhóm là: \({M_e} = 7 + \frac{{\frac{{56}}{2} - 15}}{{15}}.2 \approx 8,73\)

Đáp án : B