Đề bài

Độ dài một cạnh góc vuông và cạnh huyền của một tam giác vuông lần lượt là 3cm và 5cm. Diện tích của tam giác vuông đó là:

  • A.
    12cm2.
  • B.
    14cm2.
  • C.
    6cm2.
  • D.
    7cm2.
Phương pháp giải

Sử dụng định lí Pythagore để tính.

Lời giải của GV Loigiaihay.com

Tam giác ABC vuông tại A có AC = 3cm, BC = 5cm. Áp dụng định lí Pythagore vào tam giác ABC, ta có: \(A{B^2} + A{C^2} = B{C^2}\)

\(\begin{array}{l} \Rightarrow A{B^2} = B{C^2} - A{C^2} = {5^2} - {3^2} = 16\\ \Rightarrow AB = \sqrt {16} = 4(cm)\end{array}\)

Diện tích của tam giác vuông đó là: \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}4.3 = 6\left( {c{m^2}} \right)\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Phân thức \(\frac{2}{{x - 3}}\) không có nghĩa khi:

Xem lời giải >>
Bài 2 :

Phân thức nghịch đảo của phân thức \(\frac{2}{{x - 4}}\left( {x \ne 4} \right)\) là:

Xem lời giải >>
Bài 3 :

Rút gọn phân thức \(\frac{{x - 3}}{{{x^2} - 9}}\left( {x \ne \pm 3} \right)\), ta được kết quả:

Xem lời giải >>
Bài 4 :

Cho hình khối chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích V của khối chóp S.ABC.

Xem lời giải >>
Bài 5 :

Một hình chóp tứ giác đều S.ABCD có độ dài trung đoạn là 12cm và đáy là hình vuông có chu vi là 40cm. Diện tích xung quanh của hình chóp tứ giác đều đó là:

Xem lời giải >>
Bài 6 :

Cho biểu thức \(M = \frac{{2\left( {1 - 9{x^2}} \right)}}{{3{x^2} + 6x}}:\frac{{2 - 6x}}{{3x}}\).

a) Rút gọn M.

b) Tìm các giá trị nguyên của x để M có giá trị nguyên.

Xem lời giải >>
Bài 7 :

1. Một giá đèn cầy có dạng hình chóp tứ giác đều như hình bên có độ dài cạnh đáy là 14cm; các cạnh bên có độ dài bằng \(17\sqrt 2 \)cm

Tính thể tích của giá đèn cầy có dạng hình chóp tứ giác đều với kích thước như trên. (Làm tròn đến hàng đơn vị).

2. Cho hình thang cân \(ABCD\) \((AB\parallel CD,AB < CD)\), các đường cao \(AH\), \(BK\).

a) Tứ giác \(ABKH\) là hình gì? Vì sao?

b) Chứng minh \(DH = CK\).

c) Tứ giác \(ABCE\) là hình gì?

Xem lời giải >>