Đề bài

Hình chóp tứ giác đều S.ABCD có các mặt bên là những tam giác đều AB = 8cm, O là trung điểm của AC. Độ dài đoạn SO là:

  • A.
    \(8\sqrt 2 \)cm.
  • B.
    6cm.
  • C.
    \(\sqrt {32} \)cm.
  • D.
    4cm.
Phương pháp giải

Sử dụng công thức tính thể tích hình chóp tứ giác đều.

Lời giải của GV Loigiaihay.com

Hình chóp tứ giác đều S.ABCD có đáy là hình vuông, O là trung điểm của AC nên SO là đường cao của hình chóp S.ABCD.

Xét tam giác ABC vuông tại B, áp dụng định lí Pythagore, ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} = {8^2} + {8^2} = 128\\ \Rightarrow AC = \sqrt {128}  = 8\sqrt 2 \\ \Rightarrow AO = \frac{{8\sqrt 2 }}{2} = 4\sqrt 2 \end{array}\)

Vì tam giác SAB đều nên SA = AB = 8cm. Xét tam giác SAO vuông tại O, áp dụng định lí Pythagore, ta có:

\(\begin{array}{l}S{O^2} = S{A^2} - A{O^2} = {8^2} - {\left( {4\sqrt 2 } \right)^2} = 32\\ \Rightarrow SO = \sqrt {32} \end{array}\)

Đáp án : C