Đề bài

Với a3 + b3 + c3 = 3abc thì

  • A.
    \(a = b = c\).
  • B.
    \(a + b + c = 1\).
  • C.
    \(a = b = c\) hoặc \(a + b + c = 0\).
  • D.
    \(a = b = c\) hoặc \(a + b + c = 1\).
Phương pháp giải
Sử dụng đẳng thức đặc biệt \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = \;\left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - bc - ac} \right)\);
Lời giải của GV Loigiaihay.com

Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\;-3abc = 0\)

\(\begin{array}{*{20}{l}}{{b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\;-bc} \right)}\\{ = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\;-3bc} \right]}\\{ = {{\left( {b + c} \right)}^3}\;-3bc\left( {b + c} \right)}\\{ \Rightarrow {a^3}\; + {b^3}\; + {c^3}\;-3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc}\\{ \Leftrightarrow {a^3}\; + {b^3}\; + {c^3}\;-3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc\left( {b + c} \right)-3abc}\\{ \Leftrightarrow {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = \left( {a + b + c} \right)\left( {{a^2}\;-a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right)-\left[ {3bc\left( {b + c} \right) + 3abc} \right]}\\{ \Leftrightarrow {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = \left( {a + b + c} \right)\left( {{a^2}\;-a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right)-3bc\left( {a + b + c} \right)}\\{ \Leftrightarrow {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = \left( {a + b + c} \right)\left( {{a^2}\;-a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\;-3bc} \right)}\\{ \Leftrightarrow {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = \left( {a + b + c} \right)\left( {{a^2}\;-ab\; - ac + {b^2}\; + 2bc + {c^2}\;-3bc} \right)}\\{ \Leftrightarrow {a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\;-ab-ac-bc} \right)}\end{array}\)

Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right)-3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\;-ab-ac-bc = 0\)

Mà \({a^2}\; + {b^2}\; + {c^2}\;-ab-ac-bc = .\left[ {{{\left( {a-b} \right)}^2}\; + {{\left( {a-c} \right)}^2}\; + {{\left( {b-c} \right)}^2}} \right]\)

Nếu \({\left( {a-b} \right)^2}\; + {\left( {a-c} \right)^2}\; + {\left( {b-c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ \begin{array}{l}a - b = 0\\b - c = 0\\a - c = 0\end{array} \right. \Rightarrow a = b = c\)

Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Giá trị thỏa mãn \(2{x^2}\;-4x + 2 = 0\)

Xem lời giải >>
Bài 2 :

Đa thức \(4{b^2}{c^2}-{\left( {{c^2} + {b^2}-{a^2}} \right)^2}\) được phân tích thành

Xem lời giải >>
Bài 3 :

Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

Xem lời giải >>
Bài 4 :

Tính giá trị biểu thức \(P = {x^3}-3{x^2} + 3x\) với \(x = 1001\)

Xem lời giải >>
Bài 5 :

Tìm x, biết \(2 - 25{x^2} = 0\)

Xem lời giải >>
Bài 6 :

Đa thức \({x^6}-{y^6}\) được phân tích thành

Xem lời giải >>
Bài 7 :

Tính nhanh biểu thức \({37^2} - {13^2}\)

Xem lời giải >>
Bài 8 :

Phân tích đa thức \({x^2} - 2xy + {y^2}{\rm{ - }}81\) thành nhân tử:

Xem lời giải >>
Bài 9 :

Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

Xem lời giải >>
Bài 10 :

Chọn câu sai.

Xem lời giải >>
Bài 11 :

Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

Xem lời giải >>
Bài 12 :

Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

Xem lời giải >>
Bài 13 :

Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

Xem lời giải >>
Bài 14 :

Cho\(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

Xem lời giải >>
Bài 15 :

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

Xem lời giải >>
Bài 16 :

Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

Xem lời giải >>
Bài 17 :

Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

Xem lời giải >>
Bài 18 :

Chọn câu đúng nhất:

Xem lời giải >>
Bài 19 :

Gọi\({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó\({x_1}\; + {x_2}\; + {x_3}\) bằng

Xem lời giải >>