Cho\(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
-
A.
\(B < 8300\).
-
B.
\(B > 8500\).
-
C.
\(B < 0\).
-
D.
\(B > 8300\).
\(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)
Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:
\(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).
Vậy \(B > 8300\) khi \(x = 20-y\).
Đáp án : D
Các bài tập cùng chuyên đề
Giá trị thỏa mãn \(2{x^2}\;-4x + 2 = 0\)
Đa thức \(4{b^2}{c^2}-{\left( {{c^2} + {b^2}-{a^2}} \right)^2}\) được phân tích thành
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Tính giá trị biểu thức \(P = {x^3}-3{x^2} + 3x\) với \(x = 1001\)
Tìm x, biết \(2 - 25{x^2} = 0\)
Đa thức \({x^6}-{y^6}\) được phân tích thành
Tính nhanh biểu thức \({37^2} - {13^2}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{\rm{ - }}81\) thành nhân tử:
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Chọn câu sai.
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Chọn câu đúng nhất:
Gọi\({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó\({x_1}\; + {x_2}\; + {x_3}\) bằng
Với a3 + b3 + c3 = 3abc thì