Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?
-
A.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
-
B.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
-
C.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
-
D.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)
Sử dụng công thức \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}} = - 1\).
\(\begin{array}{l}\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = {\left( {\frac{a}{{b - c}}} \right)^2} + {\left( {\frac{b}{{c - a}}} \right)^2} + {\left( {\frac{c}{{a - b}}} \right)^2}\\ = {\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\end{array}\)
(Vì \({\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} \ge 0\forall a,\,b,\,c\) đôi một khác nhau)
Mà \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\)
\(\begin{array}{l} = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)
\(\begin{array}{l} \Rightarrow \frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}}\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ = \left( { - 2} \right)\left( { - 1} \right) = 2\end{array}\)
Đáp án : C