Đề bài

Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).

  • A.
    \(A =  - 1\)
  • B.
    \(A = 0\)
  • C.
    \(A = 1\)
  • D.
    \(A = 2\)
Phương pháp giải

Thay \(2023 = abc\) vào biểu thức \(A\) sau đó rút gọn biểu thức \(A\).

Lời giải của GV Loigiaihay.com

Thay \(2023 = abc\) vào biểu thức \(A\) ta được:

\(\begin{array}{l}\frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{ac}}{{1 + ac + c}} + \frac{1}{{c + 1 + ac}} + \frac{c}{{ac + 1 + c}} = 1\end{array}\)

Đáp án : C