Đề bài

Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

  • A.
    \(B = \frac{1}{{2020}}\)
  • B.
    \(B = \frac{1}{{202000}}\)
  • C.
    \(B = \frac{1}{{200200}}\)
  • D.
    \(B = \frac{1}{{20200}}\)
Phương pháp giải

Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}} = \frac{{x - 3}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} - \frac{{x - 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\\ = \frac{{\left( {x - 3} \right) - \left( {x - 23} \right)}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{x - 3 - x + 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{20}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\end{array}\)

Với \(x = 2023\), ta có: \(B = \frac{{20}}{{\left( {2023 - 23} \right)\left( {2023 - 3} \right)}} = \frac{{20}}{{2000.2020}} = \frac{{20}}{{20.100.2020}} = \frac{1}{{100.2020}} = \frac{1}{{202000}}\)

Đáp án : B