Đề bài

Cho hình chóp tứ giác đều S. ABCD có diện tích xung quanh bằng \(72c{m^2}\) , chiều cao có độ dài bằng 6cm, độ dài trung đoạn băng 4cm. Thể tích của khối chóp đó là?

  • A.
    \(36c{m^3}\).
  • B.
    \(162c{m^3}\).
  • C.
    \(162\sqrt 3 c{m^3}\).
  • D.
    \(72c{m^3}\).
Phương pháp giải

B1: Tính độ dài cạnh đáy.

B2: Tính diện tích mặt đáy.

B3: Tính thể tích hình chóp đều theo công thức.

Lời giải của GV Loigiaihay.com

Gọi x là độ dài cạnh đáy, khi đó chu vi đáy bằng: 4x \( =  > p = 2x\).

Diện tích xung quanh của hình chóp là: \({S_{xq}} = 72c{m^2}\)

\(\begin{array}{l} \Rightarrow p.d = 72\\ \Rightarrow 2x.4 = 72\\ \Rightarrow x = 9(cm)\end{array}\)

Độ dài cạnh đáy là: \(18.2:4 = 9cm\)

Diện tích mặt đáy là: \({S_{ABCD}} = 9.9 = 81c{m^2}\)

Áp dụng công thức thể tích khối chóp ta được: \(V = \frac{1}{3}.81.6 = 162c{m^3}\)

Đáp án : B