Đề bài

Trong các dãy số sau đây, với giả thiết \(n \in {\mathbb{N}^*}\):

\({u_n} = {\left( {\frac{2}{3}} \right)^n};{v_n} = {\left( {\frac{4}{3}} \right)^n};{q_n} = \sin n + \cos n\)

Số dãy số bị chặn là:

  • A.
    0.
  • B.
    1.
  • C.
    2.
  • D.
    3.
Phương pháp giải

Sử dụng định nghĩa:

• Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn trên nếu tồn tại một số \(M\) sao cho \({u_n} \le M,\forall n \in {\mathbb{N}^*}\).

• Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn dưới nếu tồn tại một số \(m\) sao cho \({u_n} \ge m,\forall n \in {\mathbb{N}^*}\).

• Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, nghĩa là tồn tại các số \(M\) và \(m\) sao cho \(m \le {u_n} \le M,\forall n \in {\mathbb{N}^*}\).

Lời giải của GV Loigiaihay.com

• Với \({u_n} = {\left( {\frac{2}{3}} \right)^n}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\frac{2}{3} < 1 \Leftrightarrow {\left( {\frac{2}{3}} \right)^n} < {1^n} \Leftrightarrow {\left( {\frac{2}{3}} \right)^n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\({\left( {\frac{2}{3}} \right)^n} > 0\). Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

• Với \({v_n} = {\left( {\frac{4}{3}} \right)^n}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\({\left( {\frac{4}{3}} \right)^n} > 0\). Vậy \(\left( {{v_n}} \right)\) bị chặn dưới và không bị chặn trên.

• Với \({q_n} = \sin n + \cos n\)

\({q_n} = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}\sin n + \frac{1}{{\sqrt 2 }}\cos n} \right)\sqrt 2 \left( {\sin n\cos \frac{\pi }{4} + \cos n\sin \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right)\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\( - 1 \le \sin \left( {n + \frac{\pi }{4}} \right) \le 1 \Leftrightarrow  - \sqrt 2  \le \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right) \le \sqrt 2 \). Vậy \(\left( {{q_n}} \right)\) bị chặn.

Vậy có 2 dãy số bị chặn.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Cho dãy số \(\left( {{u_n}} \right)\) được xác định như sau: \({u_1} = 1\) và \({u_{n + 1}} = 3 - {u_n}\) với \(n \ge 1.\) Số hạng \({u_2}\) bằng

Xem lời giải >>
Bài 2 :

Mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 3 :

Cho dãy số \(\left( {{u_n}} \right)\). Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 4 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{n}{{n + 1}}\) với \(n \ge 1\). Số hạng thứ 10 của dãy số là:

Xem lời giải >>
Bài 5 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 10{u_n} - 9n\end{array} \right.\) với \(n \ge 1\). Ba số hạng đầu của dãy số là:

Xem lời giải >>
Bài 6 :

Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n.\left( {n + 1} \right)}}\) với \(n \in {\mathbb{N}^*}\). Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 7 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{{n - 1}}{{2n + 1}}\). Dãy số \(\left( {{u_n}} \right)\) là:

Xem lời giải >>
Bài 8 :

Dãy số nào trong các dãy số sau là dãy số bị chặn?

Xem lời giải >>
Bài 9 :

Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào  bị chặn trên:

Xem lời giải >>
Bài 10 :

Cho dãy số có các số hạng đầu là: 5; 10; 15; 20; 25; … Số hạng tổng quát của dãy số này là:

Xem lời giải >>
Bài 11 :

Tìm công thức tính số hạng tổng quát \({u_n}\) theo \(n\) của các dãy số sau : \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = {u_n} + 2\end{array} \right.\)

Xem lời giải >>
Bài 12 :

Dãy số \(\left( {{u_n}} \right)\) được xác định bởi công thức \({u_n} = 3 - 2n\) với \(n \in {\mathbb{N}^*}\). Tính tổng \(S = {u_1} + {u_2} + ... + {u_{10}}\).

Xem lời giải >>
Bài 13 :

Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) biết: \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).

Xem lời giải >>
Bài 14 :

Cho dãy số \(\left( {{u_n}} \right)\) có tổng của \(n\) số hạng đầu cho bởi công thức \({S_n} = {3^n} - 1\). Khẳng định nào sau đây sai?

Xem lời giải >>
Bài 15 :

Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = \sqrt {2023} }\\{{u_n} = \sqrt {2023 + {u_{n - 1}}} }\end{array}} \right.\). Nhận định nào dưới đây là đúng?

Xem lời giải >>
Bài 16 :

Với giá trị nào của \(a\) thì dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{an - 1}}{{n + 2}},\forall n \in {\mathbb{N}^*}\) là dãy số tăng?

Xem lời giải >>
Bài 17 :

Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.,\forall n \in {\mathbb{N}^*}\). Tìm số hạng tổng quát \({u_n}\) của dãy số.

Xem lời giải >>
Bài 18 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = 2023\sin \frac{{n\pi }}{2} + 2024\cos \frac{{n\pi }}{3}\). Mệnh đề nào dưới đây đúng?

Xem lời giải >>
Bài 19 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + 2n + 1\end{array} \right.\left( {n \ge 1} \right)\). Giá trị của \(n\) để \( - {u_n} + 2023n + 2024 = 0\) là:

Xem lời giải >>