Đề bài

Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G sao cho ED // BC; \(E{\rm{D}} = \frac{1}{2}BC\) . M và N lần lượt là các điểm của GC và GB và MN // BC; \(MN = \frac{1}{2}BC\); Tứ giác MNED là hình gì?

  • A.
    Hình chữ nhật
  • B.
    Hình bình hành
  • C.
    Hình thang cân
  • D.
    Hình thang vuông
Phương pháp giải
Chứng minh tứ giác MNED có MN // ED, MN = ED nên tứ giác MNED là hình bình hành
Lời giải của GV Loigiaihay.com

Xét tam giác ABC : ED // BC; \(E{\rm{D}} = \frac{1}{2}BC\) (1)

+ Xét tam giác GBC có : MN // BC; \(MN = \frac{1}{2}BC\) (2)

Từ (1), (2) ⇒ MN // ED, MN = ED nên tứ giác MNED là hình bình hành (dấu hiệu nhận biết)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Hình chữ nhật có kích thước hai cạnh kề là \(5\,cm\) và \(12\,cm\). Độ dài đường chéo của hình chữ nhật đó là

Xem lời giải >>
Bài 2 :

Điền từ, cụm từ thích hợp vào chỗ (…) trong câu sau để được khẳng định đúng:

Tứ giác có ... là hình chữ nhật.”

Xem lời giải >>
Bài 3 :

Hai đường chéo của hình chữ nhật có tính chất nào sau đây?

Xem lời giải >>
Bài 4 :

Chọn khẳng định đúng trong các khẳng định sau

Xem lời giải >>
Bài 5 :

Hình chữ nhật có mấy tâm đối xứng?

Xem lời giải >>
Bài 6 :

Hình bình hành cần có thêm điều kiện nào sau đây thì trở thành hình chữ nhật?

Xem lời giải >>
Bài 7 :

Cho hình chữ nhật \(ABCD\) có \(AB{\rm{ }} = {\rm{ }}6\;cm\) và đường chéo \(BD{\rm{ }} = {\rm{ }}10\;cm\). Tính độ dài cạnh \(BC\).

Xem lời giải >>
Bài 8 :

Hình bình hành \(ABCD\) là hình chữ nhật khi

Xem lời giải >>
Bài 9 :

Chọn câu sai. Tứ giác ABCD là hình chữ nhật khi:

Xem lời giải >>
Bài 10 :

Hãy chọn câu đúng. Cho ΔABC với M thuộc cạnh BC. Từ M vẽ ME song song với AB và MF song song với AC. Hãy xác định điều kiện của ΔABC để tứ giác AEMF là hình chữ nhật.

Xem lời giải >>
Bài 11 :

Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:

Xem lời giải >>
Bài 12 :

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Điểm M ở vị trí nào trên BC thì DE có độ dài nhỏ nhất?

Xem lời giải >>
Bài 13 :

Cho tam giác \(ABC\), đường cao \(AH\). \(I\) là trung điểm của \(AC\), \(E\) đối xứng với \(H\)qua \(I\). Tứ giác \(AHCE\) là hình gì?

Xem lời giải >>
Bài 14 :

Hình chữ nhật \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Biết \(\widehat {AOD} = {50^o}\), tính số đo \(\widehat {ABO}\).

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\), N, \(P\) lần lượt là trung điểm thuộc các cạnh \(AB\), AC, \(BC\) và \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\).Tứ giác \(AMPN\) là hình gì?

Xem lời giải >>
Bài 16 :

Cho hình chữ nhật \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\) và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\);\(EH\;\;{\rm{//}}\;\;BD\),\(FG\;\;{\rm{//}}\;\;BD\) Tứ giác \(EFGH\) là hình gì?

Xem lời giải >>
Bài 17 :

Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:

Xem lời giải >>
Bài 18 :

Cho hình thang vuông \(ABCD\) có \(\widehat A = \widehat D = {90^o}\) . Gọi \(M\) là trung điểm của \(AC\) và \(BM{\rm{ }} = {\rm{ }}\frac{1}{2}AC\) . Khẳng định nào sau đây sai

Xem lời giải >>
Bài 19 :

Cho tứ giác \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\)và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\), \(EH\;\;{\rm{//}}\;\;BD\), \(FG\;\;{\rm{//}}\;\;BD\). Tứ giác \(ABCD\) cần thêm điều kiện nào sau đây để tứ giác \(EFGH\) là hình chữ nhật?

Xem lời giải >>