Đề bài
Tìm nghiệm của phương trình \(2\sin x - 3 = 0\).
-
A.
\(x \in \emptyset \).
-
B.
\(\left[ \begin{array}{l}x = \arcsin \left( {\frac{3}{2}} \right) + k2\pi \\x = \pi - \arcsin \left( {\frac{3}{2}} \right) + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\).
-
C.
\(\left[ \begin{array}{l}x = \arcsin \left( {\frac{3}{2}} \right) + k2\pi \\x = - \arcsin \left( {\frac{3}{2}} \right) + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\).
-
D.
\(x \in \mathbb{R}\).
Phương pháp giải
Ta có: \(\sin x = m\) có nghiệm khi và chỉ khi \( - 1 \le m \le 1\)
Lời giải của GV Loigiaihay.com
Ta có: \(2\sin x - 3 = 0 \Leftrightarrow \sin x = \frac{3}{2} > 1\) nên phương trình vô nghiệm.
Đáp án : A