Tìm tập nghiệm của phương trình \(\tan 3x + \tan x = 0\).
-
A.
\(\left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\).
-
B.
\(\left\{ {\frac{{k\pi }}{4}} \right\}\).
-
C.
\(\left\{ {k\pi ;\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\).
-
D.
\(\left\{ {k\pi ;\frac{\pi }{4} + k\pi } \right\}\).
Biến đổi phương trình về dạng cơ bản bằng cách sử dụng công thức lượng giác
\(\tan \left( { - x} \right) = - \tan x\)
Điều kiện: \(\left\{ \begin{array}{l}\cos 3x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{6} + \frac{{k\pi }}{3}\\x \ne \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow x \ne \frac{\pi }{6} + \frac{{k\pi }}{3},\,\,k \in \mathbb{Z}\)
\(\tan 3x + \tan x = 0 \Leftrightarrow \tan 3x = \tan \left( { - x} \right) \Leftrightarrow 3x = - x + k\pi \Leftrightarrow x = \frac{{l\pi }}{4},\,\,k \in \mathbb{Z}\)
So sánh điều kiện suy ra nghiệm của phương trình là \(x = k\pi ;\,\,x = \frac{\pi }{4} + \frac{{k\pi }}{2}\).
Đáp án : C
Các bài tập cùng chuyên đề
Nghiệm của phương trình \(\cos x = \cos \frac{\pi }{{12}}\) là
Giải phương trình \(\sqrt {\rm{3}} \tan 2x - 3 = 0\).
Tìm nghiệm của phương trình \(2\sin x - 3 = 0\).
Tìm số nghiệm thuộc đoạn \(\left[ {\pi ;2\pi } \right]\) của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\).
Gọi nghiệm lớn nhất trên khoảng \(\left( {0;\pi } \right)\) của phương trình \({\sin ^2}x + {\cos ^2}4x = 1\) có dạng \({x_0} = \frac{{\pi a}}{b}\). Tính giá trị biểu thức \(P = {a^2} + {b^2}\).
Tính tổng \(S\) các nghiệm trên đoạn \(\left[ {0;2\pi } \right]\) của phương trình \(\frac{{\cos 2x}}{{1 - \sin 2x}} = 0\).
Tìm số nghiệm của phương trình \(\sqrt {4 - {x^2}} \sin 2x = 0\).
Tất cả các nghiệm của phương trình \(\cos \left( {\frac{{2\pi }}{3}\sin x - \frac{{2\pi }}{3}} \right) = 1\) có dạng \({x_0} = \frac{\pi }{m} + kn\pi ;\,\,k,m,n \in \mathbb{Z}\). Tính tổng \(S = m + n\).
Tính tổng \(S\) các nghiệm trên đoạn \(\left[ {0;\pi } \right]\) của phương trình \(\left( {1 + \cos x} \right)\left( {2\sin x - \cos x} \right) = {\sin ^2}x\).
Tìm số nghiệm trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) của phương trình \({\sin ^3}x + \sin x\cos x = 1 - {\cos ^3}x\)
Tìm \(m\) để phương trình \(\left( {m - 1} \right){\cos ^2}x = m\) có nghiệm.
Tìm \(m\) để phương trình \(\tan x + \cot x = 2m\) có nghiệm.
Nghiệm của phương trình \(\sin 3x = \cos x\) là
Tìm tập nghiệm của bất phương trình \({\tan ^2}\left( {\frac{\pi }{2} - x} \right) = \frac{{1 + \sin x}}{{\sin x}}\).
Nhiệt độ ngoài trời ờ một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \(h(t) = 29 + 3\sin \frac{\pi }{{12}}(t - 9)\)với \(h\) tính bằng độ \(\;{\rm{C}}\) và \(t\) là thời gian trong ngày tính bằng giờ. Nhiệt độ thấp nhất trong ngày là bao nhiêu độ \({\rm{C}}\) và vào lúc mấy giờ?
(Theo https://www.sciencedirect.com/science/ article/abs/pii/0168192385900139)
Nghiệm âm lớn nhất của phương trình \(\cos \left( {4x - \frac{\pi }{6}} \right) + {\sin ^2}x = {\cos ^2}x\)
Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right).\)Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Tìm số nghiệm của phương trình \(\sin x = \cos 2x\) thuộc đoạn\(\left[ {0;20\pi } \right]\).
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + bx + c\) có đồ thị như hình vẽ:
Số nghiệm nằm trong \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\) của phương trình \(f\left( {\cos x + 1} \right) = \cos x + 1\)là