Đề bài

Cho hàm số bậc nhất \(y = 2ax + a - 1\) có đồ thị hàm số là đường d.

Đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y - 4x + 3 = 0\)

Khi đó, điểm A(x; 6) thuộc đường thẳng d thì giá trị của x là:

  • A.
    \(x = \frac{{ - 8}}{3}\)
  • B.
    \(x = \frac{8}{3}\)
  • C.
    \(x =  - \frac{3}{8}\)
  • D.
    \(x = \frac{3}{8}\)
Phương pháp giải
Sử dụng hệ số góc của đường thẳng: Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
Lời giải của GV Loigiaihay.com

Hàm số \(y = 2ax + a - 1\) là hàm số bậc nhất khi \(a \ne 0\)

d’: \(y - 4x + 3 = 0\), \(y = 4x - 3\)

Vì đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y = 4x - 3\) nên hệ số góc của đường thẳng d bằng 8, hay \(2a = 8,\) \(a = 4\) (thỏa mãn)

Do đó, d: \(y = 8x + 3\)

Vì điểm A(x; 6) thuộc đường thẳng d nên \(6 = 8.x + 3\)

\(x = \frac{3}{8}\)

Đáp án : D