Tìm tập xác định của hàm số \(y = \sqrt {\frac{{1 - \cos 3x}}{{1 + \sin 4x}}} \)
-
A.
\(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{8} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}} \right\}\)
-
B.
\(D = \mathbb{R}\backslash \left\{ { - \frac{{3\pi }}{8} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}} \right\}\)
-
C.
\(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}} \right\}\)
-
D.
\(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}} \right\}\)
\(y = \sqrt {u\left( x \right)} \) có nghĩa khi và chỉ khi \(u\left( x \right)\) xác định và \(u(x) \ge 0\).
\(y = \frac{{u(x)}}{{v(x)}}\) có nghĩa khi và chỉ \(u\left( x \right)\), \(v\left( x \right)\) xác định và \(v(x) \ne 0\).
\(y = \frac{{u(x)}}{{\sqrt {v(x)} }}\) có nghĩa khi và chỉ \(u\left( x \right)\), \(v\left( x \right)\) xác định và \(v(x) > 0\).
Hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}},\,\,y = c{\rm{osx}}\)xác định trên \(\mathbb{R}\) và tập giá trị của nó là: \( - 1 \le \sin x \le 1\,\,\,;\,\,\,\,\,\,\,\, - 1 \le \cos x \le 1\).
Như vậy, \(y = {\mathop{\rm s}\nolimits} {\rm{in}}\left[ {{\rm{u}}\left( x \right)} \right],\,\,y = c{\rm{os}}\left[ {u\left( x \right)} \right]\) xác định khi và chỉ khi \(u\left( x \right)\) xác định.
\(y = \tan u\left( x \right)\) có nghĩa khi và chỉ khi \(u\left( x \right)\) xác định và \(u\left( x \right) \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
\(y = \cot u\left( x \right)\) có nghĩa khi và chỉ khi \(u\left( x \right)\) xác định và \(x \ne k\pi ,k \in \mathbb{Z}\).
Do \(1 - \cos 3x \ge 0{\rm{ }}\forall x \in \mathbb{R}\) nên hàm số có nghĩa \( \Leftrightarrow 1 + \sin 4x \ne 0\)
\( \Leftrightarrow \sin 4x \ne - 1 \Leftrightarrow x \ne - \frac{\pi }{8} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}\).
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{8} + k\frac{\pi }{2},{\rm{ }}k \in \mathbb{Z}} \right\}\).
Đáp án : A