Mẫu thức của phân thức \(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}}\) sau khi thu gọn có thể là:
- 
                        A.
                        \(x - y\)
 - 
                        B.
                        \(\frac{{x - y}}{{x + y}}\)
 - 
                        C.
                        \(x + y\)
 - 
                        D.
                        \(\left( {x - 1} \right)\left( {x + y} \right)\)
 
Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
\(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}} = \frac{{x\left( {x - y} \right) - \left( {x - y} \right)}}{{x\left( {x + y} \right) - \left( {x + y} \right)}} = \frac{{\left( {x - 1} \right)\left( {x - y} \right)}}{{\left( {x - 1} \right)\left( {x + y} \right)}} = \frac{{x - y}}{{x + y}}\)
Vậy mẫu thức của phân thức \(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}}\) sau khi thu gọn là \(x + y\).
Đáp án : C

                

