Đề bài

Mẫu thức của phân thức \(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}}\) sau khi thu gọn có thể là:

  • A.
    \(x - y\)
  • B.
    \(\frac{{x - y}}{{x + y}}\)
  • C.
    \(x + y\)
  • D.
    \(\left( {x - 1} \right)\left( {x + y} \right)\)
Phương pháp giải

Muốn rút gọn một phân thức đại số ta làm như sau:

- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;

- Chia cả tử và mẫu cho nhân tử chung đó.

Lời giải của GV Loigiaihay.com

\(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}} = \frac{{x\left( {x - y} \right) - \left( {x - y} \right)}}{{x\left( {x + y} \right) - \left( {x + y} \right)}} = \frac{{\left( {x - 1} \right)\left( {x - y} \right)}}{{\left( {x - 1} \right)\left( {x + y} \right)}} = \frac{{x - y}}{{x + y}}\)

Vậy mẫu thức của phân thức \(\frac{{{x^2} - xy - x + y}}{{{x^2} + xy - x - y}}\) sau khi thu gọn là \(x + y\).

Đáp án : C