Chọn câu sai. Với đa thức\(B \ne 0\) ta có:
-
A.
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (với \(M\) khác đa thức 0)
-
B.
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (với \(N\) là một nhân tử chung, \(N\) khác đa thức 0)
-
C.
\(\frac{A}{B} = \frac{{ - A}}{{ - B}}\)
-
D.
\(\frac{A}{B} = \frac{{A + M}}{{B + M}}\)
Dựa vào tính chất cơ bản của phân thức đại số:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức 0 thì được một phân thức bằng phân thức đã cho:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác đa thức 0)
- Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
Theo tính chất cơ bản của phân thức đại số, ta có:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (với \(M\) khác đa thức 0) \( \Rightarrow \frac{A}{B} = \frac{{A\left( { - 1} \right)}}{{B\left( { - 1} \right)}} = \frac{{ - A}}{{ - B}}\)
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (với \(N\) là một nhân tử chung, \(N\) khác đa thức 0)
Mệnh đề \(\frac{A}{B} = \frac{{A + M}}{{B + M}}\) sai. Ví dụ: \(\frac{2}{3} \ne \frac{3}{4} = \frac{{2 + 1}}{{3 + 1}}\)
Đáp án : D
Các bài tập cùng chuyên đề
Phân thức \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}}\) (với \(x \ne 3\)) bằng với phân thức nào sau đây?
Mẫu thức chung của các phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\)là?
Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:
Cho \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\). Khi đó:
Đa thức nào sau đây là mẫu thức chung của các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\)
Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:
Tìm \(x\) biết \({a^2}x + 2ax + 4 = {a^2}\) với \(a \ne 0;\,a \ne - 2\).
Tính giá trị phân thức \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\) tại \(x = 1\).
Cho \(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}}\) và \(a + 2b = 5\). Khi đó:
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên?
Cho các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\)
An nói rằng mẫu thức chung của các phân thức trên là \(2\left( {{x^2} - 1} \right)\)
Bình nói rằng mẫu thức chung của các phân thức trên là \(12\left( {x - 1} \right)\left( {x + 1} \right)\)
Chọn câu đúng?
Rút gọn phân thức \(A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}}\) biết \(3 < x < 5\)
Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)
Giá trị của biểu thức \(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = \frac{1}{2}\) là
Với giá trị nào của \(x\) thì \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất?
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?
Tính giá trị của biểu thức \(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}}\) tại \(x = 98\) và \(y = 1\)
Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống \(\frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x - 3}}{{...}};\,\frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{...}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\). Các đa thức lần lượt là:
Cho \(a > b > 0\). Chọn câu đúng?
Với điều kiện nào thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?