Với \(x \ne y\), hãy viết phân thức \(\frac{1}{{x - y}}\) dưới dạng phân thức có tử là \({x^2} - {y^2}\)
-
A.
\(\frac{{{x^2} - {y^2}}}{{\left( {x - y} \right){y^2}}}\)
-
B.
\(\frac{{{x^2} - {y^2}}}{{x + y}}\)
-
C.
\(\frac{{{x^2} - {y^2}}}{{x - y}}\)
-
D.
\(\frac{{{x^2} - {y^2}}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\)
Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).
Phân thức cần tìm có dạng là \(\frac{{{x^2} - {y^2}}}{A}\)
Ta có: \(\frac{1}{{x - y}} = \frac{{{x^2} - {y^2}}}{A} \Leftrightarrow A.1 = \left( {x - y} \right)\left( {{x^2} - {y^2}} \right)\)
\( \Leftrightarrow A = \left( {x - y} \right)\left( {x - y} \right)\left( {x + y} \right) \Leftrightarrow A = {\left( {x - y} \right)^2}\left( {x + y} \right)\)
Vậy phân thức cần tìm là \(\frac{{{x^2} - {y^2}}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\)
Đáp án : D