Đề bài

Có bao nhiêu giá trị của \(x\) để phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) có giá trị bằng 0?

  • A.
    0
  • B.
    1
  • C.
    2
  • D.
    3
Phương pháp giải

Tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là điều kiện của biến để giá trị của mẫu thức \(B\) khác 0.

Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải của GV Loigiaihay.com

Điều kiện: \({x^2} - 2x + 1 \ne 0\)

\({\left( {x - 1} \right)^2} \ne 0\)

\(x - 1 \ne 0 \)

\(x \ne 1\)

Ta có:

\(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}} = 0\)

\({x^2} - 1 = 0\)

\({x^2} = 1\)

\(x = 1(L)\) hoặc \(x =  - 1(TM)\)

Vậy có 1 giá trị thỏa mãn yêu cầu đề bài.

Đáp án : B