Đề bài
Có bao nhiêu giá trị của \(x\) để phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) có giá trị bằng 0?
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Phương pháp giải
Tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là điều kiện của biến để giá trị của mẫu thức \(B\) khác 0.
Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).
Lời giải của GV Loigiaihay.com
Điều kiện: \({x^2} - 2x + 1 \ne 0\)
\({\left( {x - 1} \right)^2} \ne 0\)
\(x - 1 \ne 0 \)
\(x \ne 1\)
Ta có:
\(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}} = 0\)
\({x^2} - 1 = 0\)
\({x^2} = 1\)
\(x = 1(L)\) hoặc \(x = - 1(TM)\)
Vậy có 1 giá trị thỏa mãn yêu cầu đề bài.
Đáp án : B