Nghiệm của phương trình \(\frac{{x + a}}{{b + c}} + \frac{{x + b}}{{a + c}} + \frac{{x + c}}{{a + b}} = - 3\) (các mẫu đều khác 0) là:
-
A.
\(x = a + b + c\)
-
B.
\(x = a - b - c\)
-
C.
\(x = a + b - c\)
-
D.
\(x = - \left( {a + b + c} \right)\)
\(\frac{{x + a}}{{b + c}} + \frac{{x + b}}{{a + c}} + \frac{{x + c}}{{a + b}} = - 3\)
\(\left( {\frac{{x + a}}{{b + c}} + 1} \right) + \left( {\frac{{x + b}}{{a + c}} + 1} \right) + \left( {\frac{{x + c}}{{a + b}} + 1} \right) = 0\)
\(\frac{{x + a + b + c}}{{b + c}} + \frac{{x + a + b + c}}{{a + c}} + \frac{{x + a + b + c}}{{a + b}} = 0\)
\(\left( {x + a + b + c} \right)\left( {\frac{1}{{b + c}} + \frac{1}{{c + a}} + \frac{1}{{a + b}}} \right) = 0\)
\(x + a + b + c = 0\)
\(x = - \left( {a + b + c} \right)\)
Vậy nghiệm của phương trình đã cho là \(x = - \left( {a + b + c} \right)\)
Đáp án : D
Các bài tập cùng chuyên đề
Phương trình với ẩn x có dạng:
Phương trình nào dưới đây là phương trình một ẩn?
\({x_0}\) được gọi là nghiệm của phương trình \(A\left( x \right) = B\left( x \right)\) nếu:
Phương trình dạng \(ax + b = 0\), với a, b là hai số đã cho được gọi là phương trình bậc nhất một ẩn x khi:
Cho phương trình \(2x + 1 = 0\), chọn khẳng định đúng
Nghiệm của phương trình \(3x - 6 = 0\) là:
Nghiệm của phương trình \(\frac{3}{4} + \frac{2}{5}x = 0\) có dạng \(x = - \frac{a}{b},\) trong đó \(b > 0\) và \(\frac{a}{b}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Ở một số quốc gia, người ta dùng cả hai đơn vị đo nhiệt độ là Fahrenheit (oF) và độ Celcius (oC), liên hệ với nhau bởi công thức \(C = \frac{5}{9}\left( {F - 32} \right).\) Khi ở 20 oC thì ứng với độ Fahrenheit là:
Biết rằng \(4x - 8 = 0\). Giá trị của biểu thức \(5{x^2} - 4\) là:
Phương trình \({x^2} + 4 = 0\) có bao nhiêu nghiệm?
Tìm x, biết rằng nếu lấy x trừ đi \(\frac{1}{4},\) rồi nhân kết quả với \(\frac{1}{2}\) thì được \(\frac{1}{8}\)
Gọi \({x_0}\) là nghiệm của phương trình \(3\left( {x - 5} \right) + 9x\left( {x - 3} \right) = 9{x^2}.\)
Hãy chọn đáp án đúng.
Cho \(A = \frac{{2\left( {x + 1} \right)}}{3} - \frac{1}{2},B = \frac{{1 + 3x}}{4}\). Tìm x để \(A = B\)
Cho hai phương trình \(8\left( {x - 2} \right) = 14 + 6\left( {x - 1} \right) + 2\left( {x + 5} \right)\,\,\left( 1 \right)\) và \({\left( {x - 2} \right)^2} = {x^2} - 2x - 2\left( {x - 2} \right)\;\;\left( 2 \right)\)
Hãy chọn đáp án đúng.
Cho phương trình: \(\frac{{x - 11}}{{2011}} + \frac{{x - 10}}{{2012}} = \frac{{x - 74}}{{1948}} + \frac{{x - 72}}{{1950}}\).
Khẳng định nào sau đây đúng?
Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất
Hình tam giác và hình chữ nhật ở hình dưới có cùng chu vi. Khi đó, giá trị của x là:
Cho hai phương trình \(\frac{{7x}}{8} - 5\left( {x - 9} \right) = \frac{1}{6}\left( {20x + 1,5} \right)\left( 1 \right)\) và \(2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3\;\left( 2 \right)\)
Để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1) thì giá trị của a là:
Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm?
Cho hình vẽ dưới đây. Biết rằng diện tích của cả hình đó bằng \(168{m^2}.\) Khi đó, giá trị của x (mét) là: