Đề bài

Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:

  • A.
    Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
  • B.
    Nếu \(A = 0\) thì \(x = y = z = 0\).
  • C.
    Chỉ có 1 giá trị của \(x\) để \(A = 0\).
  • D.
    Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Phương pháp giải

Ta xét dấu của các hệ số và các biến.

Các số không âm nhân với nhau ta được tích là số không âm.

Lời giải của GV Loigiaihay.com

\(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)

Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\) với \(a \ne 0.\)

Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\) nên \({x^2}{y^4}{z^6} \ge 0\) với mọi \(x;\,y;\,z.\)

Đáp án : A