Đề bài

Cho \(2a = 3b,5b = 7c\) và \(3a + 5c - 7b = 30\). Khi đó \(a + b - c\) bằng

  • A.

    \(50\)

  • B.

    \(70\)

  • C.

    \(40\)

  • D.

    \(30\)

Phương pháp giải

+ Sử dụng tính chất tỉ lệ thức để biến đổi đưa về \(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)

+ Áp dụng tính chất của dãy tỉ số bằng nhau $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$ để giải bài toán.

Lời giải của GV Loigiaihay.com

Ta có \(2a = 3b \Rightarrow \dfrac{a}{3} = \dfrac{b}{2} \Rightarrow \dfrac{a}{{21}} = \dfrac{b}{{14}}\,\left( 1 \right)\)  (nhân cả hai vế với \(\dfrac{1}{7}\))

Và \(5b = 7c \Rightarrow \dfrac{b}{7} = \dfrac{c}{5}\) \( \Rightarrow \dfrac{b}{{14}} = \dfrac{c}{{10}}\,\left( 2 \right)\)  (nhân cả hai vế với \(\dfrac{1}{2}\))

Từ (1) và (2) ta có \(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)\( = \dfrac{{3a - 7b + 5c}}{{3.21 - 7.14 + 5.10}} = \dfrac{{30}}{{15}} = 2\)

Do đó \(\dfrac{a}{{21}} = 2 \Rightarrow a = 42\); $\dfrac{b}{{14}} = 2 \Rightarrow b = 28$ và \(\dfrac{c}{{10}} = 2 \Rightarrow c = 20\)

Khi đó \(a + b - c = 42 + 28 - 20 = 50.\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu đúng. Với điều kiện các phân thức có nghĩa thì

Xem lời giải >>
Bài 2 :

Chọn câu sai. Với điều kiện các phân thức có nghĩa thì

Xem lời giải >>
Bài 3 :

Tìm hai số \(x;y\) biết \(\dfrac{x}{3} = \dfrac{y}{5}\) và \(x + y =  - 32\)

Xem lời giải >>
Bài 4 :

Biết \(\dfrac{x}{y} = \dfrac{9}{{11}}\) và \(x + y = 60\). Hai số $x;y$ lần lượt là:

Xem lời giải >>
Bài 5 :

Cho \(7x = 4y\) và \(y - x = 24\). Tính \(x;y\).

Xem lời giải >>
Bài 6 :

Chia số \(48\) thành bốn phần tỉ lệ với các số \(3;5;7;9\). Các số đó theo thứ tự tăng dần là

Xem lời giải >>
Bài 7 :

Cho \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\) và \(x + y + z =  - 90\). Số lớn nhất trong ba số \(x;y;z\) là

Xem lời giải >>
Bài 8 :

Có bao nhiêu bộ số \(x;y\) thỏa mãn \(\dfrac{x}{5} = \dfrac{y}{4}\) và \({x^2} - {y^2} = 9\).

Xem lời giải >>
Bài 9 :

Tìm $x;y$ biết \(\dfrac{x}{y} = \dfrac{7}{3}\) và \(5x - 2y = 87\).

Xem lời giải >>
Bài 10 :

Cho \(\dfrac{x}{2} = \dfrac{y}{5}\) và \(xy = 10\). Tính $x - y$ biết \(x > 0;y > 0.\)

Xem lời giải >>
Bài 11 :

Tìm các số \(x;y;z\) biết \(\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{4} = \dfrac{{z - 5}}{6}\,\,\,(1)\) và \(5z - 3x - 4y = 50\)

Xem lời giải >>
Bài 12 :

Tính diện tích hình chữ nhật có tỉ số giữa hai cạnh của nó là \(\dfrac{2}{3}\) và chu vi bằng \(40m\).

Xem lời giải >>
Bài 13 :

Tìm một số chẵn có ba chữ số (có chữ số hàng đơn vị khác $0$) biết rằng các chữ số của nó theo thứ tự từ hàng trăm đến hàng đơn vị tỉ lệ với ba số $1; 2;$\(3\)

Xem lời giải >>
Bài 14 :

Biết các cạnh của một tam giác tỉ lệ với $4; 5; 3$ và chu vi của nó bằng $120m.$ Tính cạnh nhỏ nhất của tam giác đó.

Xem lời giải >>
Bài 15 :

Ba lớp $7A, 7B, 7C$ có tất cả $153$ học sinh. Số học sinh lớp $7B$ bằng \(\dfrac{8}{9}\) số học sinh lớp $7A,$ số học sinh lớp $7C$ bằng \(\dfrac{{17}}{{16}}\) số học sinh lớp $7B.$ Tính số học sinh của lớp $7A.$

Xem lời giải >>
Bài 16 :

Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\)thì

Xem lời giải >>
Bài 17 :

Cho \(x;y;z\) là ba số dương phân biệt. Tìm tỉ số \(\dfrac{x}{y}\) biết \(\dfrac{y}{{x - z}} = \dfrac{{x + y}}{z} = \dfrac{x}{y}\) .

Xem lời giải >>
Bài 18 :

Cho \(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a};\,a + b + c \ne 0\) và \(a = 2018\). Tính \(b,c\).

Xem lời giải >>
Bài 19 :

Cho $4$ số khác $0$ là \({a_1},{a_2},{a_3},{a_4}\)  thoả mãn \({a_2}^2 = {a_1}.{a_3},{a_3}^2 = {a_2}.{a_4}.\) Chọn câu đúng.

Xem lời giải >>
Bài 20 :

Cho \(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d}.\) Chọn đáp án đúng.

Xem lời giải >>