Đề bài

Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau  tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

  • A.

    $\widehat {x'Oy} = 135^\circ $                   

  • B.

    $\widehat {x'Oy'} = 45^\circ $

  • C.

    $\widehat {xOy'} = 135^\circ $

  • D.

    $\widehat {x'Oy'} = 135^\circ $

Phương pháp giải

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

Lời giải của GV Loigiaihay.com

Vì hai đường thẳng $xx'$  và $yy'$  cắt nhau tại $O$  nên $Ox'$  là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 45^\circ \)

\( \Rightarrow \widehat {x'Oy} = 135^\circ \)

Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 135^\circ .\)

Suy ra A, B, C đúng, D sai.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

Xem lời giải >>
Bài 2 :

Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

Xem lời giải >>
Bài 3 :

Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

Xem lời giải >>
Bài 4 :

Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

Xem lời giải >>
Bài 5 :

Cho hình vẽ sau. Biết góc $xOy'$  đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

Xem lời giải >>
Bài 6 :

Vẽ góc $xOy$ có số đo bằng  $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

Xem lời giải >>
Bài 7 :

Hai đường thẳng $xy$  và $x'y'$  cắt nhau tại $O.$  Biết \(\widehat {xOx'} = {70^o}\). $Ot$  là tia phân giác của góc xOx’. $Ot'$  là tia đối của tia $Ot.$ Tính số đo góc $yOt'.$

Xem lời giải >>
Bài 8 :

Cho đường thẳng $AB$  và điểm $O$  trên đường thẳng đó. Trên cùng một nửa mặt phẳng bờ $AB$  vẽ hai tia $OC$  và $OD$  sao cho \(\widehat {AOC} = \widehat {BOD} = {50^o}\). Trên nửa mặt phẳng bờ $AB$  không chứa tia $OD,$  vẽ tia $OE$ sao cho tia $OA$  là tia phân giác của góc $COE.$ Chọn câu đúng?

Xem lời giải >>
Bài 9 :

Cho \(\widehat {AOB} = 50^\circ \) , tia \(OC\) là tia phân giác của \(\widehat {AOB}\). Gọi \(OD\) là tia đối của tia \(OC\). Trên nửa mặt phẳng bờ \(CD\) chứa tia \(OA\), vẽ tia \(OE\) sao cho \(\widehat {DOE} = 25^\circ \). Góc nào dưới đây đối đỉnh với \(\widehat {DOE}\).

Xem lời giải >>
Bài 10 :

Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại $O$ tạo thành \(\widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)

Xem lời giải >>
Bài 11 :

Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

Xem lời giải >>