Cho tam giác \(ABC\) nhọn có trực tâm \(H.\) Chọn câu đúng.
-
A.
\(AB + AC > HA + HB + HC\)
-
B.
\(AB + AC < HA + HB + HC\)
-
C.
\(AB + AC = HA + HB + HC\)
-
D.
\(AB + AC \le HA + HB + HC\)
- Qua \(H\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(F\), kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(E\).
- Chứng minh \(\Delta AEH = \Delta HFA\,\)\( \Rightarrow EH = AF;\,AE = HF\) (hai cạnh tương ứng).
- Sử dụng quan hệ đường xiên – đường vuông góc để chứng minh \(BF > BH\),\(CE > CH\).
- Áp dụng bất đẳng thức tam giác vào \(\Delta AEH\) ta có: \(AE + EH > HA\).
Từ đó lập luận suy ra điều phải chứng minh.
Qua \(H\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(F\), kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(E\).
Vì \(AE//HF\) (cách vẽ) nên \(\widehat {EAH} = \widehat {FHA}\) (hai góc so le trong bằng nhau)
Vì \(AF//HE\) (cách vẽ) nên \(\widehat {AHE} = \widehat {HAF}\) (hai góc so le trong bằng nhau)
Xét \(\Delta AEH\) và \(\Delta HFA\) có:
\(AH\) cạnh chung
\(\widehat {EAH} = \widehat {FHA}\,\,(cmt)\)
\(\widehat {AHE} = \widehat {HAF}\,\,(cmt)\)
\( \Rightarrow \Delta AEH = \Delta HFA\,(g.c.g)\)
\( \Rightarrow EH = AF;\,AE = HF\) (hai cạnh tương ứng).
Vì \(BH \bot AC\) và \(FH//AC\) nên \(BH \bot FH\).
Ta có: \(BF;\,BH\) lần lượt là đường xiên và đường vuông góc kẻ từ \(B\) đến \(FH\) nên \(BF > BH\) (quan hệ đường xiên – đường vuông góc).
Vì \(CH \bot AB\) và \(EH//AB\) nên \(CH \bot EH\).
Ta có: \(CE;\,CH\) lần lượt là đường xiên và đường vuông góc kẻ từ \(C\) đến \(EH\) nên \(CE > CH\) (quan hệ đường xiên – đường vuông góc).
Xét \(\Delta AEH\) có: \(AE + EH > HA\) (bất đẳng thức tam giác)
Ta có: \(AB + AC = AF + FB + AE + EC\)
\( \Rightarrow AB + AC = EH + FB + AE + EC\) (vì \(AF = EH\,(cmt)\))
\( \Rightarrow AB + AC = \left( {AE + EH} \right) + FB + EC > HA + HB + HC\).
Vậy \(AB + AC > HA + HB + HC\).
Đáp án : A
Các bài tập cùng chuyên đề
Gọi $O$ là giao điểm của ba đường trung trực trong \(\Delta ABC\). Khi đó $O$ là:
-
A.
Điểm cách đều ba cạnh của \(\Delta ABC\).
-
B.
Điểm cách đều ba đỉnh của \(\Delta ABC\).
-
C.
Tâm đường tròn ngoại tiếp \(\Delta ABC\).
-
D.
Đáp án B và C đúng
Nếu một tam giác có một đường trung tuyến đồng thời là đường trung trực thì tam giác đó là tam giác gì?
-
A.
Tam giác vuông
-
B.
Tam giác cân
-
C.
Tam giác đều
-
D.
Tam giác vuông cân
Cho \(\Delta ABC\) cân tại $A,$ có \(\widehat A = {40^0}\), đường trung trực của $AB$ cắt $BC$ ở $D.$ Tính \(\widehat {CAD}\).
-
A.
\({30^0}\)
-
B.
\({45^0}\)
-
C.
\({60^0}\)
-
D.
\({40^0}\).
Cho tam giác \(ABC\) trong đó \(\widehat A = 100^\circ \). Các đường trung trực của \(AB\) và \(AC\) cắt cạnh \(BC\) theo thứ tự ở \(E\) và \(F\) . Tính \(\widehat {EAF}.\)
-
A.
\(20^\circ \)
-
B.
\(30^\circ \)
-
C.
\(40^\circ \)
-
D.
\(50^\circ \)
Cho \(\Delta ABC\) nhọn, đường cao $AH.$ Lấy điểm $D$ sao cho $AB$ là trung trực của $HD.$ Lấy điểm $E$ sao cho $AC$ là trung trực của $HE.$ Gọi $M$ là giao điểm của $DE$ với $AB,N$ là giao điểm của $DE$ với $AC.$ Chọn câu đúng.
-
A.
\(\Delta ADE\) là tam giác cân
-
B.
$HA$ là tia phân giác của \(\widehat {MHN}\).
-
C.
A, B đều đúng
-
D.
A, B đều sai
Cho \(\Delta ABC\) vuông tại $A,$ có \(\widehat C = {30^0}\), đường trung trực của $BC$ cắt $AC$ tại $M.$ Em hãy chọn câu đúng:
-
A.
$BM$ là đường trung tuyến của \(\Delta ABC\)
-
B.
\(BM = AB\).
-
C.
$BM$ là phân giác của \(\widehat {ABC}\).
-
D.
$BM$ là đường trung trực của \(\Delta ABC\).
Cho tam giác $ABC$ vuông tại $A,$ kẻ đường cao $AH.$ Trên cạnh $AC$ lấy điểm $K$ sao cho $AK = AH.$ Kẻ \(KD \bot AC\left( {D \in BC} \right)\). Chọn câu đúng.
-
A.
\(\Delta AHD = \Delta AKD\)
-
B.
$AD$ là đường trung trực của đoạn thẳng $HK.$
-
C.
\(AD\) là tia phân giác của góc \(HAK.\)
-
D.
Cả A, B, C đều đúng.
Cho tam giác \(ABC\) cân tại \(A\) có \(AM\) là đường trung tuyến khi đó
-
A.
\(AM \bot BC\)
-
B.
\(AM\) là đường trung trực của \(BC\)
-
C.
\(AM\) là đường phân giác của góc \(BAC.\)
-
D.
Cả A, B, C đều đúng.
Cho \(\Delta ABC\) cân tại $A,$ hai đường cao $BD$ và $CE$ cắt nhau tại $I.$ Tia $AI$ cắt $BC$ tại $M.$ Khi đó \(\Delta MED\) là tam giác gì?
-
A.
Tam giác cân
-
B.
Tam giác vuông cân
-
C.
Tam giác vuông
-
D.
Tam giác đều.
Cho đoạn thẳng $AB$ và điểm $M$ nằm giữa $A$ và $B$$\;\left( {MA < MB} \right).$ Vẽ tia $Mx$ vuông góc với $AB,$ trên đó lấy hai điểm $C$ và $D$ sao cho $MA = MC,MD = MB.$ Tia $AC$ cắt $BD$ ở $E.$ Tính số đo \(\widehat {AEB}\)
-
A.
\({30^0}\)
-
B.
\({45^0}\)
-
C.
\({60^0}\)
-
D.
\({90^0}\).