Cho \(\Delta ABC\) cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khi đó ta có:
-
A.
I cách đều ba đỉnh của \(\Delta ABC\).
-
B.
A, I, G thẳng hàng
-
C.
G cách đều ba cạnh của \(\Delta ABC\).
-
D.
Cả 3 đáp án trên đều đúng
Áp dụng tính chất:
Trong một tam giác cân, đường trung tuyến xuất phát từ đỉnh cũng đồng thời là đường phân giác ứng với cạnh đáy.
$I$ là giao điểm của các đường phân giác trong tam giác nên I cách đều 3 cạnh của tam giác. Vậy A sai
Ta có:\(\Delta ABC\) cân tại $A,I$ là giao điểm của các đường phân giác trong tam giác nên $AI$ vừa là đường trung tuyến đồng thời là đường phân giác của \(\widehat {BAC}\) . Mà $G$ là trọng tâm của \(\Delta ABC\) nên $A,G,I$ thẳng hàng. Chọn B.
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai.
-
A.
Trong một tam giác có ba đường trung tuyến
-
B.
Các đường trung tuyến của tam giác cắt nhau tại một điểm.
-
C.
Giao của ba đường trung tuyến của một tam giác gọi là trọng tâm của tam giác đó.
-
D.
Một tam giác có ba trọng tâm
Tam giác \(ABC\) có trung tuyến \(AM = 12\,cm\) và trọng tâm \(G\). Độ dài đoạn \(AG\) là
-
A.
\(4,5\,cm\)
-
B.
\(3\,cm\)
-
C.
\(6\,cm\)
-
D.
\(8\,cm\)
Cho \(G\) là trọng tâm của tam giác đều. Chọn câu đúng.
-
A.
\(GA = GB = GC\)
-
B.
\(GA = GB > GC\)
-
C.
\(GA < GB < GC\)
-
D.
\(GA > GB > GC\)
Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó tam giác \(ABC\)
-
A.
Cân tại \(B.\)
-
B.
Cân tại \(C.\)
-
C.
Vuông tại \(A.\)
-
D.
Cân tại \(A.\)
Cho tam giác \(ABC\), các đường trung tuyến \(BD\) và \(CE\). Chọn câu đúng.
-
A.
\(BD + CE < \dfrac{3}{2}BC\)
-
B.
\(BD + CE > \dfrac{3}{2}BC\)
-
C.
\(BD + CE = \dfrac{3}{2}BC\)
-
D.
\(BD + CE = BC\)
Cho tam giác $MNP,$ hai đường trung tuyến $ME$ và $NF$ cắt nhau tại $O.$ Tính diện tích tam giác $MNP,$ biết diện tích tam giác $MNO$ là \(12c{m^2}\).
-
A.
$18\,c{m^2}$
-
B.
\(48\,c{m^2}\)
-
C.
\(36\,c{m^2}\)
-
D.
\(24\,c{m^2}\)
Cho tam giác \(ABC\), đường trung tuyến \(BD\). Trên tia đối của tia $DB$ lấy điểm \(E\) sao cho \(DE = DB.\) Gọi \(M,N\) theo thứ tự là trung điểm của \(BC;CE.\) Gọi \(I;K\) theo thứ tự là giao điểm của \(AM,AN\) với \(BE.\) Chọn câu đúng.
-
A.
\(BI = IK > KE\)
-
B.
\(BI > IK > KE\)
-
C.
\(BI = IK = KE\)
-
D.
\(BI < IK < KE\)
Cho tam giác \(ABC\) có hai đường phân giác \(CD\) và \(BE\) cắt nhau tại \(I.\) Khi đó
-
A.
\(AI\) là trung tuyến vẽ từ \(A.\)
-
B.
\(AI\) là đường cao kẻ từ \(A.\)
-
C.
\(AI\) là trung trực cạnh \(BC.\)
-
D.
\(AI\) là phân giác của góc \(A.\)
Cho \(\Delta ABC\), các tia phân giác của góc $B$ và $A$ cắt nhau tại điểm $O.$ Qua $O$ kẻ đường thẳng song song với $BC$ cắt $AB$ tại $M,$ cắt $AC$ ở $N.$ Cho $BM = 4cm,CN = 5cm.$ Tính $MN?$
-
A.
$9cm$
-
B.
$6cm$
-
C.
$5cm$
-
D.
$10cm$
Cho tam giác \(ABC\) có: \(\widehat B = 2\widehat C,\) các đường phân giác của góc \(B\) và \(C\) cắt nhau tại \(I.\) Chọn câu đúng.
-
A.
\(AC = AB + IB\)
-
B.
\(AC = AB + IA\)
-
C.
\(AC = AB + IC\)
-
D.
\(AC = BC + IB\)