Đề bài

Cho \(\Delta ABC\) có \(D\) là trung điểm của \(BC\). Trong các khẳng định sau khẳng định nào đúng?

  • A.

    \(AD\) bằng nửa chu vi của tam giác \(ABC\).

  • B.

    \(AD\) nhỏ hơn nửa chu vi của tam giác \(ABC\).

  • C.

    \(AD\) lớn hơn chu vi của tam giác \(ABC\).

  • D.

    \(AD\) lớn hơn nửa chu vi của tam giác \(ABC\).

Phương pháp giải

- Nối đoạn thẳng AD.

- Áp dụng bất đẳng thức tam giác chứng minh: \(AD < AC + CD\), \(AD < AB + DB\). Từ đó lập luận suy ra điều phải chứng minh.

Lời giải của GV Loigiaihay.com

Nối đoạn thẳng AD.

Xét \(\Delta ADC\) có: \(AD < AC + CD\) (bất đẳng thức tam giác)   (1)

Xét \(\Delta ADB\) có: \(AD < AB + DB\) (bất đẳng thức tam giác)    (2)

Vì \(D\) là trung điểm của \(BC\) (gt) nên \(D\) nằm giữa \(B\) và \(C\) ta có: \(CD + DB = BC.\)

Cộng vế với vế của (1) và (2), ta được:

\(\begin{array}{l}AD + AD < AC + CD + AB + DB\\ \Rightarrow 2AD < AB + \left( {CD + DB} \right) + AC\\ \Rightarrow 2AD < AB + BC + AC\\ \Rightarrow AD < \dfrac{{AB + BC + AC}}{2}\end{array}\)

Do đó \(AD\) nhỏ hơn nửa chu vi của tam giác \(ABC\).

Đáp án : B