Đề bài

Cho \(\Delta ABC\) có điểm $O$  là một điểm bất kì nằm trong tam giác. So sánh \(OA + OC\) và \(AB + BC\).

  • A.

    \(OA + OC < BA + BC\)

  • B.

    \(OA + OC > BA + BC\)

  • C.

    \(OA + OC = BA + BC\)

  • D.

    \(OA + OC \ge BA + BC\).

Phương pháp giải

- Gọi giao điểm của $AO$  và $BC$  là $D.$

- Áp dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì lớn hơn độ dài cạnh còn lại.

Lời giải của GV Loigiaihay.com

Gọi giao điểm của $AO$  và $BC$  là $D.$  Do $O$  nằm trong \(\Delta ABC\) nên $D$  nằm giữa $B$  và $C$\( \Rightarrow BC = BD + DC\left( * \right)\)

Xét \(\Delta ABD\) có: \(AD < AB + BD\) (bất đẳng thức tam giác)

\( \Rightarrow OA + OD < AB + BD\left( 1 \right)\)

Xét \(\Delta OCD\) có: \(OC < OD + DC\left( 2 \right)\) (bất đẳng thức tam giác)

Cộng vế với vế của \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được:

\(OA + OD + OC < AB + BD + OD + DC\) \( \Rightarrow OA + OC < AB + BD + DC\left( {**} \right)\)

Từ \(\left( * \right)\) và \(\left( {**} \right)\) ta có: \(OA + OC < AB + BC.\)

Đáp án : A