Đề bài

Ba vòi nước cùng chảy vào một hồ có dung tích \(15,8{m^3}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{m^3}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi vòi chảy nhanh nhất chảy được bao nhiêu nước vào hồ?

  • A.

    4,8 m3

  • B.

    8 m3

  • C.

    9,6 m3

  • D.

    10,4 m3

Phương pháp giải

Lập luận để đưa bài toán về dạng có thể sử dụng tính chất của dãy tỉ số bằng nhau.

Sau đó dùng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\)

Lời giải của GV Loigiaihay.com

Gọi lượng nước các vòi thứ nhất, thứ hai, thứ ba đã chảy vào hồ theo thứ tự là \(x,y,z(x,y,z > 0\); đơn vị:\({m^3}\)), thì thời gian mà các vòi đã chảy tương ứng là \(3x,5y,8z\) (phút)

Theo bài ra ta có:

\(x + y + z = 15,8\) và \(3x = 5y = 8z\) .

Vì \(3x = 5y = 8z\)\( \Rightarrow \dfrac{{3x}}{{120}} = \dfrac{{5y}}{{120}} = \dfrac{{8z}}{{120}} \Rightarrow \)\(\dfrac{x}{{40}} = \dfrac{y}{{24}} = \dfrac{z}{{15}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{{40}} = \dfrac{y}{{24}} = \dfrac{z}{{15}} = \dfrac{{x + y + z}}{{40 + 24 + 15}} = \dfrac{{15,8}}{{79}} = 0,2\)

Do đó \(\dfrac{x}{{40}} = 0,2 \Rightarrow x = 40.0,2 = 8\left( {{m^3}} \right)\)

      \(\dfrac{y}{{24}} = 0,2 \Rightarrow y = 24.0,2 = 4,8\left( {{m^3}} \right)\)

     \(\dfrac{z}{{15}} = 0,2 \Rightarrow z = 15.0,2 = 3\left( {{m^3}} \right)\)

Vậy lượng nước các vòi thứ nhất, thứ hai, thứ ba đã chảy vào hồ theo thứ tự lần lượt là \(8{m^3};4,8{m^3};3{m^3}\)nên vòi chảy nhanh nhất là vòi 1 chảy được 8 m3

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai. Với điều kiện các phân thức có nghĩa thì:

Xem lời giải >>
Bài 2 :

Tìm hai số \(x;y\) biết \(\dfrac{x}{3} = \dfrac{y}{5}\) và \(x + y =  - 32\)

Xem lời giải >>
Bài 3 :

Cho \(7x = 4y\) và \(y - x = 24\). Tính \(x;y\).

Xem lời giải >>
Bài 4 :

Cho \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\) và \(x + y + z =  - 90\). Số lớn nhất trong ba số \(x;y;z\) là

Xem lời giải >>
Bài 5 :

Cho \(\dfrac{x}{2} = \dfrac{y}{5}\) và \(xy = 10\). Tính \(x - y\) biết \(x > 0;y > 0.\)

Xem lời giải >>
Bài 6 :

Có bao nhiêu bộ số \(x;y\) thỏa mãn \(\dfrac{x}{5} = \dfrac{y}{4}\) và \({x^2} - {y^2} = 9\).

Xem lời giải >>
Bài 7 :

Ba lớp 7A1, 7A2, 7A3 có tất cả 180 học sinh. Số học sinh lớp 7A1 bằng \(\dfrac{9}{10}\) số học sinh lớp 7A2, số học sinh lớp 7A2 bằng \(\dfrac{{10}}{{11}}\) số học sinh lớp 7A3. Tính số học sinh của lớp 7A1.

Xem lời giải >>
Bài 8 :

Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\)thì:

Xem lời giải >>