Đề bài

Bạn An chọn một số nguyên, nhân số đó với 4 rồi trừ đi 30. Lấy kết quả có được nhân với 2 và cuối cùng trừ đi 10 thì được một số có hai chữ số. Số lớn nhất An có thể chọn được có hàng đơn vị bằng:

  • A.
    \(8\)
  • B.
    \(0\)
  • C.
    \(1\)
  • D.
    \(2\)
Phương pháp giải

- Gọi số nguyên lớn nhất bạn An có thể chọn là \(x\) \(\left( {x \in \mathbb{Z}} \right)\).

- Tìm số \(A\) sau khi nhân số đó với 4 rồi trừ đi 30. Lấy kết quả có được nhân với 2 và cuối cùng trừ đi 100.

- Giải bất phương trình \(10 \le A \le 99\) và tìm \(x\) lớn nhất, từ đó suy ra hàng đơn vị của \(x\)

Lời giải của GV Loigiaihay.com

Gọi số nguyên lớn nhất bạn An có thể chọn là \(x\) \(\left( {x \in \mathbb{Z}} \right)\).

Theo bài ra ta có \(2\left( {4x - 30} \right) - 10\) là số có 2 chữ số.

\(\begin{array}{l} \Rightarrow \left[ \begin{array}{l}10 \le 2\left( {4x - 30} \right) - 10 \le 99\\ - 99 \le 2\left( {4x - 30} \right) - 10 \le  - 10\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}20 \le 2\left( {4x - 30} \right) \le 109\\ - 89 \le 2\left( {4x - 30} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}10 \le 4x - 30 \le \dfrac{{109}}{2}\\ - \dfrac{{89}}{2} \le 4x - 30 \le 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}40 \le 4x \le \dfrac{{169}}{2}\\ - \dfrac{{29}}{2} \le 4x \le 30\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}10 \le x \le \dfrac{{169}}{8}\\ - \dfrac{{29}}{8} \le x \le \dfrac{{30}}{4}\end{array} \right.\end{array}\)

Vì \(x \in \mathbb{Z}\) và \(x\) là số lớn nhất nên \(x = 21\).

Vậy số lớn nhất An có thể chọn có hàng đơn vị bằng 1.

Đáp án : C