Trong mặt phẳng với hệ toạ độ $Oxy,$ cho \(\Delta ABC\) có đỉnh $A\left( {1;2} \right),$ phương trình đường trung tuyến \(BM:2x + y + 1 = 0\) và phân giác trong \(CD:x + y - 1 = 0\). Viết phương trình đường thẳng $BC.$
-
A.
$4x + 3y + 4 = 0$
-
B.
$4x - 5y + 4 = 0$
-
C.
$4x + 6y + 4 = 0$
-
D.
$4x + 3y - 4 = 0$
- Gọi tọa độ điểm \(C\) theo phương trình của \(CD\) và tìm tọa độ \(C\) với chú ý điểm \(M \in BM\) mà \(M\) là trung điểm \(AC\)
- Kẻ \(AI \bot CD\left( {I \in CD} \right)\) cắt \(BC\) tại \(K\)
- Viết phương trình \(AI\) suy ra tọa độ của \(I = AI \cap CD\)
- Tìm tọa độ của \(K\) với chú ý \(I\) là trung điểm của \(AK\)
- Viết phương trình \(CK\) chính là \(BC\) và kết luận.
Điểm \(C \in CD:x + y - 1 = 0 \Rightarrow C\left( {t;1 - t} \right)\).
Suy ra trung điểm $M$ của $AC$ là \(M\left( {\dfrac{{t + 1}}{2};\dfrac{{3 - t}}{2}} \right)\).
$M$ thuộc $BM$ nên \((t + 1) + \dfrac{{3 - t}}{2} + 1 = 0 \Rightarrow t = - 7 \Rightarrow C\left( { - 7;8} \right)\)
Từ $A\left( {1;2} \right),$ kẻ \(AI \bot CD\left( {I \in CD} \right)\) cắt \(BC\) tại \(K\)
Suy ra \(AK:\left( {x - 1} \right) - \left( {y - 2} \right) = 0 \Leftrightarrow x - y + 1 = 0\)
Tọa độ điểm $I$ thỏa hệ: \(\left\{ \begin{array}{l}x + y - 1 = 0\\x - y + 1 = 0\end{array} \right. \Rightarrow I\left( {0;1} \right)\)
Tam giác $ACK$ cân tại $C$ nên $I$ là trung điểm của $AK \Rightarrow K\left( { - 1;0} \right)$
Đường thẳng $BC$ đi qua $C,K$ nên có phương trình:
\(\dfrac{{x + 1}}{{ - 7 + 1}} = \dfrac{y}{8} \Leftrightarrow 4x + 3y + 4 = 0\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho đường thẳng ${d_1}:x + 2y - 7 = 0$ và ${d_2}:2x - 4y + 9 = 0$. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.
Tính góc tạo bởi giữa hai đường thẳng \({d_1}:6x - 5y + 15 = 0\) và ${d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right..$
Cho hai đường thẳng ${d_1}:3x + 4y + 12 = 0$ và ${d_2}:\left\{ \begin{array}{l}x = 2 + at\\y = 1 - 2t\end{array} \right.$. Tìm các giá trị của tham số \(a\) để \({d_1}\) và \({d_2}\) hợp với nhau một góc bằng \({45^0}.\)
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng $\Delta :ax + by + c = 0$. Khoảng cách từ điểm \(M\) đến \(\Delta \) được tính bằng công thức:
Khoảng cách từ giao điểm của hai đường thẳng \(x - 3y + 4 = 0\) và \(2x + 3y - 1 = 0\) đến đường thẳng $\Delta :3x + y + 4 = 0$ bằng:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có $A\left( {1;2} \right),$ $B\left( {0;3} \right)$ và $C\left( {4;0} \right)$. Chiều cao của tam giác kẻ từ đỉnh \(A\) bằng:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có $A\left( {3; - 4} \right),$ $B\left( {1;5} \right)$ và $C\left( {3;1} \right)$. Tính diện tích tam giác \(ABC\).
Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( { - 1;2} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(2\sqrt 5 \).
Cho đường thẳng $\left( \Delta \right):3x - 2y + 1 = 0$ . Viết PTĐT $\left( d \right)$ đi qua điểm $M\left( {1;2} \right)$ và tạo với $\left( \Delta \right)$ một góc ${45^0}$
Lập phương trình đường thẳng \(\Delta\) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.
Cho đường thẳng \(d\) có ptts: \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\end{array} \right.;t \in R\). Tìm điểm \(M \in d\) sao cho khoảng cách từ $M$ đến điểm \(A(0;1)\) một khoảng bằng $5.$
Cho \(d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\) Lập phương trình hai đường phân giác của các góc tạo bởi $d$ và $d'$
Lập phương trình đường phân giác trong của góc $A$ của \(\Delta ABC\) biết \(A\left( {2;0} \right);B\left( {4;1} \right);C\left( {1;2} \right)\)
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho hình vuông $ABCD$ biết $M\left( {2;1} \right);N\left( {4;-2} \right);P\left( {2;0} \right);Q\left( {1;2} \right)$ lần lượt thuộc cạnh $AB,BC,CD,AD.$ Hãy lập phương trình cạnh $AB$ của hình vuông.
Trong mặt phẳng với hệ toạ độ $Oxy$, cho $2$ đường thẳng ${d_1}:x - 7y + 17 = 0,$
${d_2}:x + y - 5 = 0.$ Viết phương trình đường thẳng $d$ qua điểm $M\left( {0;1} \right)$ tạo với ${d_1},{d_2}$ một tam giác cân tại giao điểm của ${d_1},{d_2}$.
Trong mặt phẳng với hệ tọa độ $Oxy,$ cho $\Delta ABC$ cân có đáy là $BC.$ Đỉnh $A$ có tọa độ là các số dương, hai điểm $B$ và $C$ nằm trên trục $Ox,$ phương trình cạnh $AB:$ $y = 3\sqrt 7 (x - 1)$. Biết chu vi của $\Delta ABC$ bằng $18,$ tìm tọa độ các đỉnh $A,B,C.$
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho $4$ điểm $A\left( {1;0} \right),B\left( {-2;4} \right),C\left( {-1;4} \right),D\left( {3;5} \right).$ Tìm toạ độ điểm $M$ thuộc đường thẳng $(\Delta ):3x - y - 5 = 0$ sao cho hai tam giác $MAB,MCD$ có diện tích bằng nhau.
Trong mặt phẳng với hệ tọa độ $Oxy,$ cho hình chữ nhật $ABCD$ có điểm $I\left( {6;2} \right)$ là giao điểm của $2$ đường chéo $AC$ và $BD.$ Điểm $M\left( {1;5} \right)$ thuộc đường thẳng $AB$ và trung điểm $E$ của cạnh $CD$ thuộc đường thẳng $\Delta :x + y-5 = 0.$ Viết phương trình đường thẳng $AB.$
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho tam giác $ABC$ có phương trình đường phân giác trong góc $A$ là ${d_1}:x + y + 2 = 0,$ phương trình đường cao vẽ từ $B$ là ${d_2}:2x-y + 1 = 0,$ cạnh $AB$ đi qua $M\left( {1;-1} \right).$ Tìm phương trình cạnh $AC.$
Xét trong mặt phẳng tọa độ \(Oxy\), cặp điểm nào dưới đây nằm cùng phía so với đường thẳng \(x - 2y + 3 = 0\)?