Trong mặt phẳng với hệ toạ độ $Oxy,$ cho hình vuông $ABCD$ biết $M\left( {2;1} \right);N\left( {4;-2} \right);P\left( {2;0} \right);Q\left( {1;2} \right)$ lần lượt thuộc cạnh $AB,BC,CD,AD.$ Hãy lập phương trình cạnh $AB$ của hình vuông.
-
A.
$x-2y = 0$
-
B.
$x-2y = 0$ và $-x + y + 1 = 0$
-
C.
$-x + y + 1 = 0$
-
D.
$x-2y - 4 = 0$ và $x + y + 1 = 0$
- Gọi phương trình \(AB\) có véc tơ pháp tuyến \(\left( {a;b} \right)\) và đi qua \(M\)
- Suy ra phương trình \(BC\) theo \(a,b\) vừa gọi ở trên và \(BC\) đi qua \(N\)
- Do $ABCD$ là hình vuông nên $d\left( {P,AB} \right) = d\left( {Q,BC} \right)$, từ đó tìm \(a,b\)
Giả sử đường thẳng $AB$ qua $M$ và có VTPT là $\vec n = \left( {a;b} \right)\,\,\,\,\left( {{a^2} + {b^2} \ne 0} \right)$
=> VTPT của $BC$ là: ${\vec n_1} = \left( { - b;a} \right)$.
Phương trình AB có dạng: $a\left( {x-2} \right) + b\left( {y-1} \right) = 0$ $ \Leftrightarrow ax + by-2a-b = 0$
BC có dạng: $-b\left( {x-4} \right) + a\left( {y + 2} \right) = 0\;$ $ \Leftrightarrow -bx + ay + 4b + 2a = 0$
Do $ABCD$ là hình vuông nên $d\left( {P,AB} \right) = d\left( {Q,BC} \right)$
$ \Leftrightarrow \dfrac{{\left| { - b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \dfrac{{\left| {3b + 4a} \right|}}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \left[ \begin{array}{l}b = - 2a\\b = - a\end{array} \right.$
TH1: \(b = - 2a\)
Chọn \(a = 1 \Rightarrow b = - 2\) ta được \(AB:x - 2y - 2.1 - \left( { - 2} \right) = 0\) hay \(x - 2y = 0\)
\(BC: - \left( { - 2} \right)x + y + 4.\left( { - 2} \right) + 2.1 = 0\) hay \(2x + y - 6 = 0\)
CD đi qua P(2;0) và song song AB nên nhận \(\overrightarrow {{n_{AB}}} = \left( {1; - 2} \right)\) làm VTPT
Do đó CD: 1(x-2) – 2(y-0) = 0 hay x-2y-2=0
AD đi qua Q(1;2) và song song BC nên nhận \(\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\) làm VTPT
Do đó AD: 2(x-1) + 1(y-2) = 0 hay 2x+y-4=0
TH2: \(b = - a\)
Chọn \(a = 1 \Rightarrow b = - 1\) ta được \(AB:x - y - 2.1 - \left( { - 1} \right) = 0\) hay \(x - y - 1 = 0\)
\(BC: - \left( { - 1} \right)x + y + 4.\left( { - 1} \right) + 2.1 = 0\) hay \(x + y - 2 = 0\)
CD đi qua P(2;0) và song song AB nên nhận \(\overrightarrow {{n_{AB}}} = \left( {1; - 1} \right)\) làm VTPT
Do đó CD: 1(x-2) – 1(y-0) = 0 hay x-y-2=0
AD đi qua Q(1;2) và song song BC nên nhận \(\overrightarrow {{n_{BC}}} = \left( {1;1} \right)\) làm VTPT
Do đó AD: 1(x-1) + 1(y-2) = 0 hay x+y-3=0.
Đáp án : B
Các bài tập cùng chuyên đề
Cho đường thẳng ${d_1}:x + 2y - 7 = 0$ và ${d_2}:2x - 4y + 9 = 0$. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.
Tính góc tạo bởi giữa hai đường thẳng \({d_1}:6x - 5y + 15 = 0\) và ${d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right..$
Cho hai đường thẳng ${d_1}:3x + 4y + 12 = 0$ và ${d_2}:\left\{ \begin{array}{l}x = 2 + at\\y = 1 - 2t\end{array} \right.$. Tìm các giá trị của tham số \(a\) để \({d_1}\) và \({d_2}\) hợp với nhau một góc bằng \({45^0}.\)
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng $\Delta :ax + by + c = 0$. Khoảng cách từ điểm \(M\) đến \(\Delta \) được tính bằng công thức:
Khoảng cách từ giao điểm của hai đường thẳng \(x - 3y + 4 = 0\) và \(2x + 3y - 1 = 0\) đến đường thẳng $\Delta :3x + y + 4 = 0$ bằng:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có $A\left( {1;2} \right),$ $B\left( {0;3} \right)$ và $C\left( {4;0} \right)$. Chiều cao của tam giác kẻ từ đỉnh \(A\) bằng:
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có $A\left( {3; - 4} \right),$ $B\left( {1;5} \right)$ và $C\left( {3;1} \right)$. Tính diện tích tam giác \(ABC\).
Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( { - 1;2} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(2\sqrt 5 \).
Cho đường thẳng $\left( \Delta \right):3x - 2y + 1 = 0$ . Viết PTĐT $\left( d \right)$ đi qua điểm $M\left( {1;2} \right)$ và tạo với $\left( \Delta \right)$ một góc ${45^0}$
Lập phương trình đường thẳng \(\Delta\) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.
Cho đường thẳng \(d\) có ptts: \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\end{array} \right.;t \in R\). Tìm điểm \(M \in d\) sao cho khoảng cách từ $M$ đến điểm \(A(0;1)\) một khoảng bằng $5.$
Cho \(d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\) Lập phương trình hai đường phân giác của các góc tạo bởi $d$ và $d'$
Lập phương trình đường phân giác trong của góc $A$ của \(\Delta ABC\) biết \(A\left( {2;0} \right);B\left( {4;1} \right);C\left( {1;2} \right)\)
Trong mặt phẳng với hệ toạ độ $Oxy$, cho $2$ đường thẳng ${d_1}:x - 7y + 17 = 0,$
${d_2}:x + y - 5 = 0.$ Viết phương trình đường thẳng $d$ qua điểm $M\left( {0;1} \right)$ tạo với ${d_1},{d_2}$ một tam giác cân tại giao điểm của ${d_1},{d_2}$.
Trong mặt phẳng với hệ tọa độ $Oxy,$ cho $\Delta ABC$ cân có đáy là $BC.$ Đỉnh $A$ có tọa độ là các số dương, hai điểm $B$ và $C$ nằm trên trục $Ox,$ phương trình cạnh $AB:$ $y = 3\sqrt 7 (x - 1)$. Biết chu vi của $\Delta ABC$ bằng $18,$ tìm tọa độ các đỉnh $A,B,C.$
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho $4$ điểm $A\left( {1;0} \right),B\left( {-2;4} \right),C\left( {-1;4} \right),D\left( {3;5} \right).$ Tìm toạ độ điểm $M$ thuộc đường thẳng $(\Delta ):3x - y - 5 = 0$ sao cho hai tam giác $MAB,MCD$ có diện tích bằng nhau.
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho \(\Delta ABC\) có đỉnh $A\left( {1;2} \right),$ phương trình đường trung tuyến \(BM:2x + y + 1 = 0\) và phân giác trong \(CD:x + y - 1 = 0\). Viết phương trình đường thẳng $BC.$
Trong mặt phẳng với hệ tọa độ $Oxy,$ cho hình chữ nhật $ABCD$ có điểm $I\left( {6;2} \right)$ là giao điểm của $2$ đường chéo $AC$ và $BD.$ Điểm $M\left( {1;5} \right)$ thuộc đường thẳng $AB$ và trung điểm $E$ của cạnh $CD$ thuộc đường thẳng $\Delta :x + y-5 = 0.$ Viết phương trình đường thẳng $AB.$
Trong mặt phẳng với hệ toạ độ $Oxy,$ cho tam giác $ABC$ có phương trình đường phân giác trong góc $A$ là ${d_1}:x + y + 2 = 0,$ phương trình đường cao vẽ từ $B$ là ${d_2}:2x-y + 1 = 0,$ cạnh $AB$ đi qua $M\left( {1;-1} \right).$ Tìm phương trình cạnh $AC.$
Xét trong mặt phẳng tọa độ \(Oxy\), cặp điểm nào dưới đây nằm cùng phía so với đường thẳng \(x - 2y + 3 = 0\)?